Strength Behavior and Ultimate Capacity Prediction of Self-Compacting Concrete-Filled Thin-Walled Medium-Length Steel Tubular Columns under Eccentric Compression
Abstract
:1. Introduction
2. Experiments
2.1. Sample Fabrication
2.2. Performance of Materials
2.3. Test Setup and Procedure
3. Results and Discussion
3.1. Failure Morphology
3.2. Theory Calculation Formulas for Ultimate Capacity of Design Codes
3.3. Comparison of the Ultimate Load
4. Conclusions
- (1)
- The columns undergoing eccentric compression displayed major failure modes of buckling and lateral deflection, while the axial compression columns displayed buckling and rupture. In addition, the buckling and lateral deflection was transferred from the bottom to middle location when the wall thickness was increased.
- (2)
- The ultimate capacity increased with increasing wall thickness. With loading continuing after the peak load, the load decreased gently with increasing lateral deflection. However, the load decreased rapidly with increasing displacement.
- (3)
- The calculated ultimate capacities were correspondingly lower than the experimental values. The percentages of the calculated maximum capacities to experimental results of the columns under eccentric compression were within the range of 0.35 to 0.94, while those of the columns under axial compression were within the range of 0.61 to 0.97. This indicates that the calculated ultimate capacity is conservative and safe. The codes AISC-LRFD and JCJ 01-89 achieved the most conservative and the most precise results, respectively, when predicting the ultimate capacity.
- (4)
- The average value of the ratio of the calculated ultimate capacity to the experimental ultimate capacity of the eccentric compression columns was within the range of 0.42~0.93, while that of the columns under axial compression was within the range of 0.62~0.91.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, J.; Wang, J. Concrete-filled steel tube arch bridges in China. Engineering 2018, 4, 143–155. [Google Scholar] [CrossRef]
- Xie, K.; Wang, H.; Guo, X.; Zhou, J. Study on the safety of the concrete pouring process for the main truss arch structure in a long-span concrete-filled steel tube arch bridge. Mech. Adv. Mater. Struct. 2021, 28, 731–740. [Google Scholar] [CrossRef]
- Xu, F.; Chen, J.; Jin, W. Experimental investigation of thin-walled concrete-filled steel tube columns with reinforced lattice angle. Thin-Walled Struct. 2014, 84, 59–67. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Elchalakani, M.; Karrech, A.; Patel, V.I.; Yang, B. Behaviour of Concrete-Filled Double-Skin Short Columns under Compression through Finite Element Modelling: SHS Outer and SHS Inner Tubes; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Ayough, P.; Sulong, N.R.; Ibrahim, Z. Analysis and review of concrete-filled double skin steel tubes under compression. Thin-Walled Struct. 2020, 148, 106495. [Google Scholar] [CrossRef]
- Huang, W.P.; Yuan, Q.; Tan, Y.L.; Wang, J.; Liu, G.L.; Qu, G.L.; Li, C. An innovative support technology employing a concrete-filled steel tubular structure for a 1000-m-deep roadway in a high in situ stress field. Tunn. Undergr. Space Technol. 2018, 73, 26–36. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Cao, J.; Yan, X.; Zhang, F. Mechanism and application of concrete-filled steel tubular support in deep and high stress roadway. Constr. Build. Mater. 2018, 186, 233–246. [Google Scholar] [CrossRef]
- Liu, D. Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading. Thin-Walled Struct. 2004, 42, 1631–1644. [Google Scholar] [CrossRef]
- Xiong, M.; Xiong, D.; Liew, J.R. Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials. Eng. Struct. 2017, 136, 494–510. [Google Scholar] [CrossRef]
- De Oliveira, W.L.A.; De Nardin, S.; de Cresce El, A.L.H.; El Debs, M.K. Influence of concrete strength and length/diameter on the axial capacity of CFT columns. J. Constr. Steel Res. 2009, 65, 2103–2110. [Google Scholar] [CrossRef]
- Gupta, P.K.; Sarda, S.M.; Kumar, M.S. Experimental and computational study of concrete filled steel tubular columns under axial loads. J. Constr. Steel Res. 2007, 63, 182–193. [Google Scholar] [CrossRef]
- Guler, S.; Copur, A.; Aydogan, M. A comparative study on square and circular high strength concrete-filled steel tube columns. Adv. Steel Constr. 2014, 10, 234–247. [Google Scholar]
- Knowles, R.B.; Park, R. Strength of concrete filled steel tubular columns. J. Struct. Div. 1969, 95, 2565–2588. [Google Scholar] [CrossRef]
- Prion, H.G.; Boehme, J. Beam-column behaviour of steel tubes filled with high strength concrete. Can. J. Civ. Eng. 1994, 21, 207–218. [Google Scholar] [CrossRef]
- Schneider, S.P. Axially loaded concrete-filled steel tubes. J. Struct. Eng. 1998, 124, 1125–1138. [Google Scholar] [CrossRef]
- Matsui, C. Slender Concrete Filled Steel Tubular Columns Combined Compressionsnd Bending, Strutural Steel. Steel-Concert. Compos. Struct. 1995, 3, 29–36. [Google Scholar]
- Hu, H.T.; Huang, C.S.; Wu, M.H.; Wu, Y.M. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J. Struct. Eng. 2003, 129, 1322–1329. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, L.; Bai, Y.; Li, S.; Song, Q.; Wei, Y.; Zhang, L.; Zhang, Z.; Sha, X. Large diameter concrete-filled high strength steel tubular stub columns under compression. Thin-Walled Struct. 2016, 108, 12–19. [Google Scholar] [CrossRef]
- Zhou, X.; Mou, T.; Tang, H.; Fan, B. Experimental study on ultrahigh strength concrete filled steel tube short columns under axial load. Adv. Mater. Sci. Eng. 2017, 2017, 8410895. [Google Scholar] [CrossRef]
- Liao, F.Y.; Hou, C.; Zhang, W.J.; Ren, J. Experimental investigation on sea sand concrete-filled stainless steel tubular stub columns. J. Constr. Steel Res. 2019, 155, 46–61. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, P.; Chi, Y.; Huang, L.; Ye, J.; Yu, M. Performance of the high-strength self-stressing and self-compacting concrete-filled steel tube columns subjected to the uniaxial compression. Int. J. Civ. Eng. 2018, 16, 1069–1083. [Google Scholar] [CrossRef]
- Uy, B. Strength of concrete filled steel box columns incorporating local buckling. J. Struct. Eng. 2000, 126, 341–352. [Google Scholar] [CrossRef]
- Liang, Q.Q.; Uy, B. Parametric study on the structural behaviour of steel plates in concrete-filled fabricated thin-walled box columns. Adv. Struct. Eng. 1998, 2, 57–71. [Google Scholar] [CrossRef]
- Liang, Q.Q. Strength and ductility of high strength concrete-filled steel tubular beam–columns. J. Constr. Steel Res. 2009, 65, 687–698. [Google Scholar] [CrossRef]
- Liang, Q.Q.; Uy, B.; Liew, J.R. Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects. J. Constr. Steel Res. 2006, 62, 581–591. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Lu, X. Experimental study of hysteretic behaviour for concrete-filled square thin-walled steel tubular columns. J. Constr. Steel Res. 2007, 63, 317–325. [Google Scholar] [CrossRef]
- Goto, Y.; Jiang, K.; Obata, M. Stability and ductility of thin-walled circular steel columns under cyclic bidirectional loading. J. Struct. Eng. 2006, 132, 1621–1631. [Google Scholar] [CrossRef]
- Gajalakshmi, P.; Helena, H.J. Behaviour of concrete-filled steel columns subjected to lateral cyclic loading. J. Constr. Steel Res. 2012, 75, 55–63. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, L.; Jiang, C.; Jia, Y.; Yang, G.; Li, M.; Tang, X.; Chen, D. Axial loading behaviour of self-compacting concrete-filled thin-walled steel tubular stub columns. Adv. Civ. Eng. 2021, 2021, 8861340. [Google Scholar] [CrossRef]
- Wu, B.; Lin, L.; Zhao, J.; Shen, C. Compressive behaviour of thin-walled square tubular columns filled with high-strength steel section and precast compound concrete segments. Thin-Walled Struct. 2020, 151, 106710. [Google Scholar] [CrossRef]
- Lim, J.; Eom, T. Compression tests of octagonal concrete-filled thin-walled tube columns. Eng. Struct. 2020, 221, 111082. [Google Scholar] [CrossRef]
- Dey, S.; Kumar, V.P.; Goud, K.R.; Basha, S.K.J. State of art review on self compacting concrete using mineral admixtures. J. Build. Pathol. Rehabil. 2021, 6, 18. [Google Scholar] [CrossRef]
- Faraj, R.H.; Mohammed, A.A.; Omer, K.M. Self-compacting concrete composites modified with nanoparticles: A comprehensive review, analysis and modeling. J. Build. Eng. 2022, 50, 104170. [Google Scholar] [CrossRef]
- Fiol, F.; Revilla-Cuesta, V.; Thomas, C.; Manso, J.M. Self-compacting concrete containing coarse recycled precast-concrete aggregate and its durability in marine-environment-related tests. Constr. Build. Mater. 2023, 377, 131084. [Google Scholar] [CrossRef]
- GB 50936-2014; Technical Code for Concrete Filled Steel Tubular Structures. Architecture Industrial Press of China: Beijing, China, 2014.
- Zhang, F.; Xia, J.; Li, G.; Guo, Z.; Chang, H.; Wang, K. Degradation of axial ultimate load-bearing capacity of circular thin-walled concrete-filled steel tubular stub columns after corrosion. Materials 2020, 13, 795. [Google Scholar] [CrossRef]
- Wu, B.; Lin, L.; Zhao, J.; Yan, H. Creep behavior of thin-walled circular steel tubular columns filled with demolished concrete lumps and fresh concrete. Constr. Build. Mater. 2018, 187, 773–790. [Google Scholar] [CrossRef]
- Yu, F.; Qin, C.; Wang, S.; Jiang, J.; Fang, Y. Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression. Front. Struct. Civ. Eng. 2020, 14, 760–772. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Jia, Y.; Li, L. Experimental Study on Self-Compacting Concrete-Filled Thin-Walled Steel Tube Columns. Buildings 2022, 12, 2134. [Google Scholar] [CrossRef]
- Chen, J.; Jin, W. Experimental investigation of thin-walled complex section concrete-filled steel stub columns. Thin-Walled Struct. 2010, 48, 718–724. [Google Scholar] [CrossRef]
- Jiang, A.; Chen, J.; Jin, W. Experimental investigation and design of thin-walled concrete-filled steel tubes subject to bending. Thin-Walled Struct. 2013, 63, 44–50. [Google Scholar] [CrossRef]
- Han, L.; Li, W.; Bjorhovde, R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar] [CrossRef]
- Yu, Z.; Ding, F.; Cai, C.S. Experimental behavior of circular concrete-filled steel tube stub columns. J. Constr. Steel Res. 2007, 63, 165–174. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Geng, Y. Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns. Eng. Struct. 2015, 86, 192–212. [Google Scholar] [CrossRef]
- Tran, V.; Thai, D.; Nguyen, D. Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Struct. 2020, 151, 106720. [Google Scholar] [CrossRef]
- JCJ/T 283-2012; Technical Specification for Application of Self-Compacting Concrete. China Architecture & Building Press: Beijing, China, 2012.
- GB/T 228.1-2021; Standard for Tensile Testing Method of Metallic Materials. Standards Press of China: Beijing, China, 2021.
- GB/T 50081-2002; Standard for Test Methods for Mechanical Properties of Ordinary Concrete. China Construction Industry Press: Beijing, China, 2002.
- JCJ 01-89; Design and Construction Specification for Concrete-Filled Steel Tubular Structures. Tongji University Press: Shanghai, China, 1989.
- CECS 28: 90; Technical Specification for Concrete-Filled Steel Tubular Structures. China Planning Press: Beijing, China, 1991.
- DL/T 5085-1999; Code for Design of Steel-Concrete Composite Structure. China Electric Power Press: Beijing, China, 1999.
- DBJ 13-51-2003; Technical Specification for Concrete-Filled Steel Tubular Structures. Fujian Engineering Construction Science and Technology Standardization Association: Fuzhou, China, 2003.
- AISC-LRFD-1999; Load and Resistance factor Design Specification for Structural Steel Buildings. American Institute of Steel Construction: Chicago, IL, USA, 1999.
- BS 5400 1979; Steel Concrete and Composite Bridges, Part 5: Code of Practice for Design Composite Bridges. British Standards Institution: British, UK, 1979.
- GB 50017-2003; Code for Design of Steel Structures. China Planning Press: Beijing, China, 2003.
- Pacheco, J.N.; De Brito, J.; Chastre, C.; Evangelista, L. Probabilistic conversion of the compressive strength of cubes to cylinders of natural and recycled aggregate concrete specimens. Materials 2019, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Lyu, W.; Han, L.; Hou, C. Axial compressive behaviour and design calculations on recycled aggregate concrete-filled steel tubular (RAC-FST) stub columns. Eng. Struct. 2021, 241, 112452. [Google Scholar] [CrossRef]
- Xiao, J.Z. Recycled Concrete; China Architecture & Building Press: Beijing, China, 2008. [Google Scholar]
- ACI 318-1999; Building Code Requirements for Structural Concrete and Commentary. Institut A C: Farmington Hills, MI, USA, 1999.
- EC4-2004; Design of Composite Steel and Concrete Structures. European Committee for Standardization: Brussels, Belgium, 2004.
- Al-Ani, Y.R. Finite element study to address the axial capacity of the circular concrete-filled steel tubular stub columns. Thin-Walled Struct. 2018, 126, 2–15. [Google Scholar] [CrossRef]
Numbers | D × t × L | e | e/r |
---|---|---|---|
(mm3) | (mm) | ||
A-N-T1 | 140 × 1.2 × 700 | 0 | 0 |
E-N-T1 | 140 × 1.2 × 700 | 20 | 0.29 |
A-N-T2 | 140 × 3.0 × 700 | 0 | 0 |
E-N-T2 | 140 × 3.0 × 700 | 20 | 0.29 |
Water | Cement | Fine Aggregate | Coarse Aggregate | Fly Ash | Superplasticizer (wt.%) |
---|---|---|---|---|---|
199.0 | 401.5 | 836.5 | 768.5 | 122.1 | 0.4 |
Wall Thickness (mm) | Yield Strength (MPa) | Modulus of Elasticity (GPa) | Poisson’s Ratio |
---|---|---|---|
1.2 | 345.0 | 181.0 | 0.30 |
3.0 | 358.3 | 202.0 | 0.28 |
Numbers | Nue (kN) | Nuc (kN) | |||||
---|---|---|---|---|---|---|---|
JCJ | CECS | DL/T | DBJ | AISC | BS | ||
A-N-T1 | 1331.0 | 1117.0 | 1047.8 | 1059.9 | 899.4 | 813. 5 | 809.5 |
E-N-T1 | 759.0 | 711.3 | 679.6 | 555.3 | 593.4 | 267.3 | 569.7 |
A-N-T2 | 1627.8 | 1582.4 | 1426.0 | 1356.7 | 1187.0 | 1028.3 | 1181.0 |
E-N-T2 | 1065.8 | 978.6 | 918.7 | 713.1 | 465.0 | 512.5 | 877.0 |
Numbers | Nuc/Nue | |||||
---|---|---|---|---|---|---|
JCJ | CECS | DL/T | DBJ | AISC | BS | |
A-N-T1 | 0.84 | 0.79 | 0.80 | 0.68 | 0.61 | 0.61 |
E-N-T1 | 0.94 | 0.90 | 0.73 | 0.78 | 0.35 | 0.75 |
A-N-T2 | 0.97 | 0.88 | 0.83 | 0.73 | 0.63 | 0.73 |
E-N-T2 | 0.92 | 0.86 | 0.67 | 0.44 | 0.48 | 0.82 |
Numbers | Parameters | Nuc/Nue | |||||
---|---|---|---|---|---|---|---|
JCJ | CECS | DL/T | DBJ | AISC | BS | ||
Axial-loaded | Average value | 0.91 | 0.83 | 0.81 | 0.70 | 0.62 | 0.67 |
Variation coefficient | 0.09 | 0.06 | 0.03 | 0.04 | 0.02 | 0.08 | |
Eccentric-loaded | Average value | 0.93 | 0.88 | 0.70 | 0.61 | 0.42 | 0.79 |
Variation coefficient | 0.01 | 0.02 | 0.04 | 0.24 | 0.09 | 0.05 | |
Eccentric-loaded average value to axial-loaded average value | 1.02 | 1.06 | 0.86 | 0.87 | 0.67 | 1.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, S.; Zhang, L.; Jia, Y. Strength Behavior and Ultimate Capacity Prediction of Self-Compacting Concrete-Filled Thin-Walled Medium-Length Steel Tubular Columns under Eccentric Compression. Buildings 2023, 13, 2876. https://doi.org/10.3390/buildings13112876
Wang Y, Sun S, Zhang L, Jia Y. Strength Behavior and Ultimate Capacity Prediction of Self-Compacting Concrete-Filled Thin-Walled Medium-Length Steel Tubular Columns under Eccentric Compression. Buildings. 2023; 13(11):2876. https://doi.org/10.3390/buildings13112876
Chicago/Turabian StyleWang, Yunyang, Shengwei Sun, Liqing Zhang, and Yandong Jia. 2023. "Strength Behavior and Ultimate Capacity Prediction of Self-Compacting Concrete-Filled Thin-Walled Medium-Length Steel Tubular Columns under Eccentric Compression" Buildings 13, no. 11: 2876. https://doi.org/10.3390/buildings13112876
APA StyleWang, Y., Sun, S., Zhang, L., & Jia, Y. (2023). Strength Behavior and Ultimate Capacity Prediction of Self-Compacting Concrete-Filled Thin-Walled Medium-Length Steel Tubular Columns under Eccentric Compression. Buildings, 13(11), 2876. https://doi.org/10.3390/buildings13112876