3D Printing Technologies in Architectural Design and Construction: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Search
2.2. Data Selection
2.3. Data Analysis
3. Results
3.1. Bibliometric Analysis
3.1.1. Articles Publishing Trends
3.1.2. Source Journals
3.1.3. Keywords Analysis and Clustering
3.2. Content Analysis
3.2.1. Cluster Themes
Theme 1: 3DP Technology in Education
Theme 2: 3DP Technology in Design
Theme 3: 3DP Technology in Construction Industry
3.2.2. Categories Based on Scale
Category 1: Small-Scale Systems
Category 2: Large-Scale Systems
3.2.3. Classification of Articles
4. Discussion
4.1. Research Challenges
4.1.1. Challenge 1: Innovating Education
4.1.2. Challenge 2: Innovating Design
Design Process Challenges and Trends
Legislative Challenges and Trends
4.1.3. Challenge 3: Innovating Construction Technologies
Applied Materials and Systems Challenges and Trends
Efficiency and Economy Challenges and Trends
Environmental and Societal Challenges and Trends
4.2. Research Limitations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Carpo, M. The Digital Turn in Architecture 1992–2012; AD Reader; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1-118-42591-6. [Google Scholar]
- Carpo, M. The Second Digital Turn: Design Beyond Intelligence; Writing Architecture; MIT Press: Cambridge, MA, USA, 2017; ISBN 978-0-262-53402-4. [Google Scholar]
- Gramazio, F.; Kohler, G.; Kohler, M. Digital Materiality in Architecture; Prestel Pub: London, UK, 2008; ISBN 978-3-03778-122-7. [Google Scholar]
- Leach, N.; Turnbull, D.; Williams, C.; Williams, C.J.H. Digital Tectonics; Wiley: Hoboken, NJ, USA, 2004; ISBN 978-0-470-85729-8. [Google Scholar]
- Menges, A.; Ahlquist, S. Computational Design Thinking: Computation Design Thinking; AD Reader; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-66570-1. [Google Scholar]
- Brell-Cokcan, S.; Braumann, J. Rob|Arch 2012: Robotic Fabrication in Architecture, Art and Design; Springer: Vienna, Austria, 2013; ISBN 978-3-7091-1465-0. [Google Scholar]
- Claypool, M.; Retsin, G.; Jimenez, M.; Garcia, M.J.; Soler, V. Robotic Building: Architecture in the Age of Automation; DETAIL Special; Detail Business Information GmbH: München, Germany, 2019; ISBN 978-3-95553-424-0. [Google Scholar]
- Willmann, J.; Block, P.; Hutter, M.; Byrne, K.; Schork, T. Robotic Fabrication in Architecture, Art and Design 2018: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-92294-2. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Ali, M.H.; Abilgaziyev, A.; Adair, D. 4D Printing: A Critical Review of Current Developments, and Future Prospects. Int. J. Adv. Manuf. Technol. 2019, 105, 701–717. [Google Scholar] [CrossRef]
- Pegna, J. Exploratory Investigation of Solid Freeform Construction. Autom. Constr. 1997, 5, 427–437. [Google Scholar] [CrossRef]
- Chung, J.; Lee, G.; Kim, J.-H. Framework for Technical Specifications of 3D Concrete Printers. Autom. Constr. 2021, 127, 103732. [Google Scholar] [CrossRef]
- Ali, M.H.; Issayev, G.; Shehab, E.; Sarfraz, S. A Critical Review of 3D Printing and Digital Manufacturing in Construction Engineering. Rapid Prototyp. J. 2022, 28, 1312–1324. [Google Scholar] [CrossRef]
- García-Alvarado, R.; Moroni-Orellana, G.; Banda-Pérez, P. Architectural Evaluation of 3D-Printed Buildings. Buildings 2021, 11, 254. [Google Scholar] [CrossRef]
- Labonnote, N.; Rønnquist, A.; Manum, B.; Rüther, P. Additive Construction: State-of-the-Art, Challenges and Opportunities. Autom. Constr. 2016, 72, 347–366. [Google Scholar] [CrossRef]
- Ning, X.; Liu, T.; Wu, C.; Wang, C. 3D Printing in Construction: Current Status, Implementation Hindrances, and Development Agenda. Adv. Civ. Eng. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Zhang, D.; Song, Y. 3D Printing in Construction: State of the Art and Applications. Int. J. Adv. Manuf. Technol. 2021, 115, 1329–1348. [Google Scholar] [CrossRef]
- Perkins, I.; Skitmore, M. Three-Dimensional Printing in the Construction Industry: A Review. Int. J. Constr. Manag. 2015, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Siddika, A.; Mamun, M.A.A.; Ferdous, W.; Saha, A.K.; Alyousef, R. 3D-Printed Concrete: Applications, Performance, and Challenges. J. Sustain. Cem. Based Mater. 2020, 9, 127–164. [Google Scholar] [CrossRef]
- Tay, Y.W.D.; Panda, B.; Paul, S.C.; Noor Mohamed, N.A.; Tan, M.J.; Leong, K.F. 3D Printing Trends in Building and Construction Industry: A Review. Virtual Phys. Prototyp 2017, 12, 261–276. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Wang, X. A Critical Review of the Use of 3-D Printing in the Construction Industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef]
- Wu, P.; Zhao, X.; Baller, J.H.; Wang, X. Developing a Conceptual Framework to Improve the Implementation of 3D Printing Technology in the Construction Industry. Archit. Sci. Rev. 2018, 61, 133–142. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Dong, S.; Yu, X.; Han, B. A Review of the Current Progress and Application of 3D Printed Concrete. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105533. [Google Scholar] [CrossRef]
- Delgado Camacho, D.; Clayton, P.; O’Brien, W.J.; Seepersad, C.; Juenger, M.; Ferron, R.; Salamone, S. Applications of Additive Manufacturing in the Construction Industry-A Forward-Looking Review. Autom. Constr. 2018, 89, 110–119. [Google Scholar] [CrossRef]
- Duballet, R.; Baverel, O.; Dirrenberger, J. Classification of Building Systems for Concrete 3D Printing. Autom. Constr. 2017, 83, 247–258. [Google Scholar] [CrossRef]
- Waldschmitt, B.; Costanzi, C.B.; Knaack, U.; Lange, J. 3D Printing of Column Structures for Architectural Applications. Archit. Struct. Constr. 2022. [Google Scholar] [CrossRef]
- Ma, G.; Wang, L.; Ju, Y. State-of-the-Art of 3D Printing Technology of Cementitious Material—An Emerging Technique for Construction. Sci. China Technol. Sci. 2018, 61, 475–495. [Google Scholar] [CrossRef]
- Paul, S.C.; van Zijl, G.P.A.G.; Tan, M.J.; Gibson, I. A Review of 3D Concrete Printing Systems and Materials Properties: Current Status and Future Research Prospects. Rapid Prototyp. J. 2018, 24, 784–798. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Zhumabekova, A.; Paul, S.C.; Kim, J.R. A Review of 3D Printing in Construction and Its Impact on the Labor Market. Sustainability 2020, 12, 8492. [Google Scholar] [CrossRef]
- Pomponi, F.; Moncaster, A. Embodied Carbon Mitigation and Reduction in the Built Environment-What Does the Evidence Say? J. Environ. Manag. 2016, 181, 687–700. [Google Scholar] [CrossRef]
- Anton, A.; Reiter, L.; Wangler, T.; Frangez, V.; Flatt, R.J.; Dillenburger, B. A 3D Concrete Printing Prefabrication Platform for Bespoke Columns. Autom. Constr. 2021, 122, 103467. [Google Scholar] [CrossRef]
- Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences: A Practical Guide; Wiley: Hoboken, NJ, USA, 2008; ISBN 978-1-4051-5014-9. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, n71. [Google Scholar] [CrossRef] [PubMed]
- Saade, M.R.M.; Yahia, A.; Amor, B. How Has LCA Been Applied to 3D Printing? A Systematic Literature Review and Recommendations for Future Studies. J. Clean. Prod. 2020, 244, 118803. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering-EASE ’14, London, UK, 13–14 May 2014; ACM Press: London, UK, 2014; pp. 1–10. [Google Scholar]
- Broadus, R.N. Toward a Definition of “Bibliometrics”. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Soomro, S.A.; Casakin, H.; Georgiev, G.V. A Systematic Review on FabLab Environments and Creativity: Implications for Design. Buildings 2022, 12, 804. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. ISBN 978-3-319-10376-1. [Google Scholar]
- Schuldt, S.J.; Jagoda, J.A.; Hoisington, A.J.; Delorit, J.D. A Systematic Review and Analysis of the Viability of 3D-Printed Construction in Remote Environments. Autom. Constr. 2021, 125, 103642. [Google Scholar] [CrossRef]
- Lowke, D.; Dini, E.; Perrot, A.; Weger, D.; Gehlen, C.; Dillenburger, B. Particle-Bed 3D Printing in Concrete Construction – Possibilities and Challenges. Cem Concr Res. 2018, 112, 50–65. [Google Scholar] [CrossRef]
- Gosselin, C.; Duballet, R.; Roux, P.; Gaudillière, N.; Dirrenberger, J.; Morel, P. Large-Scale 3D Printing of Ultra-High Performance Concrete-A New Processing Route for Architects and Builders. Mater. Des. 2016, 100, 102–109. [Google Scholar] [CrossRef]
- Howeidy, D.R.; Arafat, Z. The Impact of Using 3D Printing on Model Making Quality and Cost in the Architectural Design Projects. Int. J. Appl. Eng. 2017, 12, 8. [Google Scholar]
- Kempton, W.L. Meeting Learning Challenges in Product Design Education with and through Additive Manufacturing. JSCI 2017, 15, 11. [Google Scholar]
- Loy, J. ELearning and EMaking: 3D Printing Blurring the Digital and the Physical. Educ. Sci. 2014, 4, 108–121. [Google Scholar] [CrossRef]
- Boumaraf, H.; İnceoğlu, M. Integrating 3D Printing Technologies into Architectural Education as Design Tools. Emerg. Sci. J. 2020, 4, 73–81. [Google Scholar] [CrossRef]
- Greenhalgh, S. The Effects of 3D Printing in Design Thinking and Design Education. J. Eng. Des. Technol. 2016, 14, 752–769. [Google Scholar] [CrossRef]
- Kim, S.; Shin, Y.; Park, J.; Lee, S.-W.; An, K. Exploring the Potential of 3D Printing Technology in Landscape Design Process. Land 2021, 10, 259. [Google Scholar] [CrossRef]
- Wang, C.; Yap, J.B.H.; Li, H.; Chua, J.; Abdul-Razak, A.S.; Mohd-Rahim, F.A. Topographical Survey Engineering Education Retrofitted by Computer-Aided 3D-Printing. Comput. Appl. Eng. Educ. 2018, 26, 2116–2130. [Google Scholar] [CrossRef]
- Ruheili, A.A.; Hajri, S.A. The Role of 3D Printing Technology in Landscape Architecture Teaching and Learning Practices. Educ. Sci. Theory Pract. 2021, 21, 13–26. [Google Scholar]
- Bedarf, P.; Dutto, A.; Zanini, M.; Dillenburger, B. Foam 3D Printing for Construction: A Review of Applications, Materials, and Processes. Autom. Constr. 2021, 130, 103861. [Google Scholar] [CrossRef]
- Burger, J.; Lloret-Fritschi, E.; Scotto, F.; Demoulin, T.; Gebhard, L.; Mata-Falcón, J.; Gramazio, F.; Kohler, M.; Flatt, R.J. Eggshell: Ultra-Thin Three-Dimensional Printed Formwork for Concrete Structures. 3D Print. Addit Manuf. 2020, 7, 48–59. [Google Scholar] [CrossRef]
- Gomaa, M.; Jabi, W.; Veliz Reyes, A.; Soebarto, V. 3D Printing System for Earth-Based Construction: Case Study of Cob. Autom. Constr. 2021, 124, 103577. [Google Scholar] [CrossRef]
- de la Fuente, A.; Blanco, A.; Galeote, E.; Cavalaro, S. Structural Fibre-Reinforced Cement-Based Composite Designed for Particle Bed 3D Printing Systems. Case Study Parque de Castilla Footbridge in Madrid. Cem Concr Res. 2022, 157, 106801. [Google Scholar] [CrossRef]
- Jipa, A.; Dillenburger, B. 3D Printed Formwork for Concrete: State-of-the-Art, Opportunities, Challenges, and Applications. 3D Print. Addit Manuf. 2022, 9, 84–107. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Weng, Y.; Pham, Q.-C. 3D Printing of Curved Concrete Surfaces Using Adaptable Membrane Formwork. Constr. Build Mater. 2020, 232, 117075. [Google Scholar] [CrossRef]
- Gardner, L.; Kyvelou, P.; Herbert, G.; Buchanan, C. Testing and Initial Verification of the World’s First Metal 3D Printed Bridge. J. Constr. Steel Res. 2020, 172, 106233. [Google Scholar] [CrossRef]
- Salet, T.A.M.; Ahmed, Z.Y.; Bos, F.P.; Laagland, H.L.M. Design of a 3D Printed Concrete Bridge by Testing. Virtual Phys. Prototyp. 2018, 13, 222–236. [Google Scholar] [CrossRef]
- Vantyghem, G.; De Corte, W.; Shakour, E.; Amir, O. 3D Printing of a Post-Tensioned Concrete Girder Designed by Topology Optimization. Autom. Constr. 2020, 112, 103084. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Lim, J.H.; Weng, Y.; Tay, Y.W.D.; Pham, H.; Pham, Q.-C. Large-Scale 3D Printing by a Team of Mobile Robots. Autom. Constr. 2018, 95, 98–106. [Google Scholar] [CrossRef]
- van Woensel, R. Printing Architecture: An Overview of Existing and Promising Additive Manufacturing Methods and Their Application in the Building Industry. Int. J. Constr. Environ. 2018, 9, 57–81. [Google Scholar] [CrossRef]
- Leach, N. Size Matters: Why Architecture Is the Future of 3D Printing. Archit. Design 2017, 87, 76–83. [Google Scholar] [CrossRef]
- Hu, H.; Cao, X.; Zhang, T.; Chen, Z.; Xie, J. Three-Dimensional Printing Materials for Cultural Innovation Products of Historical Buildings. Buildings 2022, 12, 624. [Google Scholar] [CrossRef]
- Kwon, Y.M.; Lee, Y.-A.; Kim, S.J. Case Study on 3D Printing Education in Fashion Design Coursework. Fash Text 2017, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Tomé, A.; Vizotto, I.; Valença, J.; Júlio, E. Innovative Method for Automatic Shape Generation and 3D Printing of Reduced-Scale Models of Ultra-Thin Concrete Shells. Infrastructures 2018, 3, 5. [Google Scholar] [CrossRef]
- Yi, H.; Kim, D.; Kim, Y.; Kim, D.; Koh, J.; Kim, M.-J. 3D-Printed Attachable Kinetic Shading Device with Alternate Actuation: Use of Shape-Memory Alloy (SMA) for Climate-Adaptive Responsive Architecture. Autom. Constr. 2020, 114, 103151. [Google Scholar] [CrossRef]
- Asprone, D.; Menna, C.; Bos, F.P.; Salet, T.A.M.; Mata-Falcón, J.; Kaufmann, W. Rethinking Reinforcement for Digital Fabrication with Concrete. Cem. Concr. Res. 2018, 112, 111–121. [Google Scholar] [CrossRef]
- Melenbrink, N.; Werfel, J.; Menges, A. On-Site Autonomous Construction Robots: Towards Unsupervised Building. Autom. Constr. 2020, 119, 103312. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Early Age Mechanical Behaviour of 3D Printed Concrete: Numerical Modelling and Experimental Testing. Cem. Concr. Res. 2018, 106, 103–116. [Google Scholar] [CrossRef]
- Al Jassmi, H.; Al Najjar, F.; Mourad, A.-H.I. Large-Scale 3D Printing: The Way Forward. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012088. [Google Scholar] [CrossRef]
- De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V.N.; Habert, G.; Agusti-Juan, I. Vision of 3D Printing with Concrete—Technical, Economic and Environmental Potentials. Cem. Concr. Res. 2018, 112, 25–36. [Google Scholar] [CrossRef]
- Bos, F.; Wolfs, R.; Ahmed, Z.; Salet, T. Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing. Virtual Phys. Prototyp. 2016, 11, 209–225. [Google Scholar] [CrossRef]
- Keating, S.J.; Leland, J.C.; Cai, L.; Oxman, N. Toward Site-Specific and Self-Sufficient Robotic Fabrication on Architectural Scales. Sci. Robot. 2017, 2, eaam8986. [Google Scholar] [CrossRef] [PubMed]
- Buswell, R.A.; Leal de Silva, W.R.; Jones, S.Z.; Dirrenberger, J. 3D Printing Using Concrete Extrusion: A Roadmap for Research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Buchli, J.; Giftthaler, M.; Kumar, N.; Lussi, M.; Sandy, T.; Dörfler, K.; Hack, N. Digital in Situ Fabrication-Challenges and Opportunities for Robotic in Situ Fabrication in Architecture, Construction, and Beyond. Cem. Concr. Res. 2018, 112, 66–75. [Google Scholar] [CrossRef]
- Borg Costanzi, C.; Ahmed, Z.Y.; Schipper, H.R.; Bos, F.P.; Knaack, U.; Wolfs, R.J.M. 3D Printing Concrete on Temporary Surfaces: The Design and Fabrication of a Concrete Shell Structure. Autom. Constr. 2018, 94, 395–404. [Google Scholar] [CrossRef]
- Buchanan, C.; Gardner, L. Metal 3D Printing in Construction: A Review of Methods, Research, Applications, Opportunities and Challenges. Eng. Struct. 2019, 180, 332–348. [Google Scholar] [CrossRef]
- Reiter, L.; Wangler, T.; Anton, A.; Flatt, R.J. Setting on Demand for Digital Concrete-Principles, Measurements, Chemistry, Validation. Cem. Concr. Res. 2020, 132, 106047. [Google Scholar] [CrossRef]
- Mehar, P.; Khobragade, P.; Mendhe, M.; Bhada, S.; Singh, V.; Salodkar, P. 3D Printing Trends in Building and Construction Industry. Int. J. Sci. Res. Sci. Technol. 2020, 7, 314–318. [Google Scholar] [CrossRef]
- Martínez-Rocamora, A.; García-Alvarado, R.; Casanova-Medina, E.; González-Böhme, L.F.; Auat-Cheein, F. Parametric Programming of 3D Printed Curved Walls for Cost-Efficient Building Design. J. Constr. Eng. Manag. 2020, 146, 04020039. [Google Scholar] [CrossRef]
- Jagoda, J.; Diggs-McGee, B.; Kreiger, M.; Schuldt, S. The Viability and Simplicity of 3D-Printed Construction: A Military Case Study. Infrastructures 2020, 5, 35. [Google Scholar] [CrossRef]
- Han, D.; Yin, H.; Qu, M.; Zhu, J.; Wickes, A. Technical Analysis and Comparison of Formwork-Making Methods for Customized Prefabricated Buildings: 3D Printing and Conventional Methods. J. Archit. Eng. 2020, 26, 04020001. [Google Scholar] [CrossRef]
- Hack, N.; Dörfler, K.; Walzer, A.N.; Wangler, T.; Mata-Falcón, J.; Kumar, N.; Buchli, J.; Kaufmann, W.; Flatt, R.J.; Gramazio, F.; et al. Structural Stay-in-Place Formwork for Robotic in Situ Fabrication of Non-Standard Concrete Structures: A Real Scale Architectural Demonstrator. Autom. Constr. 2020, 115, 103197. [Google Scholar] [CrossRef]
- El-Sayegh, S.; Romdhane, L.; Manjikian, S. A Critical Review of 3D Printing in Construction: Benefits, Challenges, and Risks. Archiv. Civ. Mech. Eng. 2020, 20, 34. [Google Scholar] [CrossRef] [Green Version]
- Carneau, P.; Mesnil, R.; Roussel, N.; Baverel, O. Additive Manufacturing of Cantilever-From Masonry to Concrete 3D Printing. Autom. Constr. 2020, 116, 103184. [Google Scholar] [CrossRef]
- Javed, A.; Mantawy, I.M.; Azizinamini, A. 3D-Printing of Ultra-High-Performance Concrete for Robotic Bridge Construction. Transp. Res. Rec. 2021, 2675, 307–319. [Google Scholar] [CrossRef]
- Katzer, J.; Skoratko, A. Concept of Using 3D Printing for Production of Concrete–Plastic Columns with Unconventional Cross-Sections. Materials 2021, 14, 1565. [Google Scholar] [CrossRef]
- Abdallah, Y.K.; Estévez, A.T. 3D-Printed Biodigital Clay Bricks. Biomimetics 2021, 6, 59. [Google Scholar] [CrossRef]
- Celani, G. Digital Fabrication Laboratories: Pedagogy and Impacts on Architectural Education. Nexus Netw. J. 2012, 14, 469–482. [Google Scholar] [CrossRef]
- De Sampaio, C.; Spinosa, R.; Vicentin, J.; Tsukahara, D.; Silva, J.; Borghi, S.; Rostirolla, F. 3D Printing in Graphic Design Education. In High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping; Taylor & Francis: Abingdon, UK, 2013; pp. 25–30. ISBN 978-1-138-00137-4. [Google Scholar]
- Hou, L.; Tan, Y.; Luo, W.; Xu, S.; Mao, C.; Moon, S. Towards a More Extensive Application of Off-Site Construction: A Technological Review. Int. J. Constr. Manag. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.C.; Sepasgozar, S.; Zlatanova, S. A Systematic Review of Digital Technology Adoption in Off-Site Construction: Current Status and Future Direction towards Industry 4.0. Buildings 2020, 10, 204. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Mitchell, A.; Lafont, U.; Hołyńska, M.; Semprimoschnig, C. Additive Manufacturing—A Review of 4D Printing and Future Applications. Addit. Manuf. 2018, 24, 606–626. [Google Scholar] [CrossRef]
- Alshahrani, H.A. Review of 4D Printing Materials and Reinforced Composites: Behaviors, Applications and Challenges. J. Sci.-Adv. Mater. Dev. 2021, 6, 167–185. [Google Scholar] [CrossRef]
- Chea, C.P.; Bai, Y.; Pan, X.; Arashpour, M.; Xie, Y. An Integrated Review of Automation and Robotic Technologies for Structural Prefabrication and Construction. Transp. Saf. Environ. 2020, 2, 81–96. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Information source | Scopus, Web of Science, Google Scholar |
Search Strategy | (a) Keyword method [using keyword strings: “3D printing” AND “architecture” OR “design” OR “construction” OR “rapid prototyping” OR “education”]) and |
(b) Snowballing method | |
Eligibility criteria | (a) Document type: journal papers; |
(b) Search language: title, abstract, key words, and full text only in English; | |
(c) Data range: 2013–present; | |
(d) Last update: 25 June 2022 |
Journals | No. of Papers | SJR (2021) | IF (2021) |
---|---|---|---|
Science Robotics | 1 | Q1 | 27.541 |
Cement and Concrete Research | 8 | Q1 | 11.958 |
Virtual and Physical Prototyping | 3 | Q1 | 10.962 |
Automation in Construction | 16 | Q1 | 10.517 |
Composites Part A: Applied Science and Manufacturing | 1 | Q1 | 9.463 |
Construction and Building Materials | 1 | Q1 | 7.693 |
Engineering Structures | 1 | Q1 | 5.582 |
3D Printing and Additive Manufacturing | 2 | Q1 | 5.355 |
Journal of Sustainable Cement-Based Materials | 1 | Q1 | 5.328 |
Journal of Constructional Steel Research | Q1 | 4.349 | |
Rapid Prototyping Journal | 1 | Q1 | 4.043 |
Archives of Civil and Mechanical Engineering | 1 | Q1 | 4.042 |
Sustainability | 1 | Q2 | 3.889 |
Materials | 1 | Q2 | 3.748 |
Biomimetics | 1 | Q2 | 3.743 |
International Journal of Advanced Manufacturing Technology | 1 | Q1 | 3.563 |
Buildings | 2 | Q1 | 3.324 |
Computer Applications in Engineering Education | 1 | Q1 | 2.109 |
Transportation Research Record | 1 | Q2 | 2.019 |
Infrastructures | 2 | Q2 | / |
Keyword | Occurrences | Relevance Score |
---|---|---|
structure | 44 | 0.6264 |
industry | 39 | 1.3401 |
concrete | 36 | 0.9324 |
student | 36 | 1.3935 |
model | 29 | 0.6883 |
construction industry | 28 | 0.9395 |
3D printing technology | 24 | 0.922 |
formwork | 24 | 1.2044 |
education | 22 | 1.2286 |
environment | 21 | 0.4794 |
approach | 20 | 0.2337 |
geometry | 18 | 0.6266 |
architecture | 16 | 0.4672 |
fabrication | 14 | 0.8044 |
production | 13 | 0.8934 |
framework | 12 | 1.2117 |
automation | 11 | 0.8441 |
bridge | 11 | 1.207 |
case study | 11 | 0.5958 |
concrete structure | 11 | 1.4197 |
art | 10 | 0.8032 |
housing industry | 10 | 2.3917 |
creativity | 9 | 1.5211 |
digital fabrication | 9 | 0.7792 |
3D concrete printing | 8 | 1.2498 |
No. | Cluster | Theme | No. of Keywords | Representative Keywords | Tag |
---|---|---|---|---|---|
1 | Green | Application of 3DP technology in education | 17 | student model education creativity | Education |
2 | Red | Application of 3DP technology in design | 30 | structure concrete fabrication architecture production | Design |
3 | Blue | Application of 3DP technology in construction industry | 15 | 3DP technology construction industry automation new development | Construction |
No. | Category | Materials | Methods | Applications |
---|---|---|---|---|
1 | Small-scale | (a) Plastic:
(c) Ceramic; (d) Wax; (e) Liquid photosensitive resin. |
(a) Stereolithography (SLA); (b) Fused deposition modelling (FDM); (c) Selective Laser Sintering (SLS); (d) Direct Metal Laser Sintering (DMLS); (e) Selective Laser Melting (SLM). | (a) Research:
(c) Design:
|
2 | Large-scale | (a) Concrete–cement-based materials; (b) Polymers; (c) Metal; (d) Alternative materials:
| (a) Powder based—Binder jetting:
| (a) Research:
(c) Construction industry:
|
Year | Theme Tag | Scale Category | Author(s) Reference | ||||
---|---|---|---|---|---|---|---|
Education | Design | Construction | Small-Scale | Large-Scale | |||
2014 | • | • | • | Loy [45] | |||
2015 | • | • | Perkins and Skitmore [18] | ||||
2016 | • | • | Wu et al. [21] | ||||
• | • | • | Labonnote et al. [15] | ||||
• | • | Greenhalgh [47] | |||||
• | • | Gosselin et al. [42] | |||||
• | • | • | Bos et al. [72] | ||||
2017 | • | • | • | Tay et al. [20] | |||
• | • | Leach [62] | |||||
• | • | • | Kempton [44] | ||||
• | • | • | Keating et al. [73] | ||||
• | • | Howeidy and Arafat [43] | |||||
• | • | • | Duballet et al. [25] | ||||
2018 | • | • | X. Zhang et al. [60] | ||||
• | • | • | Wu et al. [22] | ||||
• | • | • | Wolfs et al. [69] | ||||
• | • | Wang et al. [49] | |||||
• | • | • | van Woensel [61] | ||||
• | • | Tomé et al. [65] | |||||
• | • | • | Salet et al. [58] | ||||
• | • | • | Ma et al. [27] | ||||
• | • | • | Lowke et al. [41] | ||||
• | • | Delgado Camacho et al. [24] | |||||
• | • | • | De Schutter et al. [71] | ||||
• | • | • | Buswell et al. [74] | ||||
• | • | • | Buchli et al. [75] | ||||
• | • | Borg Costanzi et al. [76] | |||||
• | • | Asprone et al. [67] | |||||
2019 | • | • | • | J. Zhang et al. [23] | |||
• | • | Buchanan and Gardner [77] | |||||
2020 | • | • | Yi et al. [66] | ||||
• | • | • | Vantyghem et al. [59] | ||||
• | • | • | Siddika et al. [19] | ||||
• | • | Reiter et al. [78] | |||||
• | • | Melenbrink et al. [68] | |||||
• | • | Mehar et al. [79] | |||||
• | • | Martínez-Rocamora et al. [80] | |||||
• | • | Lim et al. [56] | |||||
• | • | Jagoda et al. [81] | |||||
• | • | Hossain et al. [29] | |||||
• | • | • | Han et al. [82] | ||||
• | • | • | Hack et al. [83] | ||||
• | • | • | Gardner et al. [57] | ||||
• | • | • | El-Sayegh et al. [84] | ||||
• | • | Carneau et al. [85] | |||||
• | • | • | Burger et al. [52] | ||||
• | • | Boumaraf and İnceoğlu [46] | |||||
2021 | • | • | Schuldt et al. [40] | ||||
• | • | Ruheili and Hajri [50] | |||||
• | • | Pan et al. [17] | |||||
• | • | Ning et al. [16] | |||||
• | • | Kim et al. [48] | |||||
• | • | Javed et al. [86] | |||||
• | • | • | Gomaa et al. [53] | ||||
• | • | • | García-Alvarado et al. [14] | ||||
• | • | Chung et al. [12] | |||||
• | • | • | Bedarf et al. [51] | ||||
• | • | • | • | Katzer and Skoratko [87] | |||
• | • | • | • | Abdallah and Estévez [88] | |||
• | • | • | • | Anton et al. [31] | |||
2022 | • | • | • | Waldschmitt et al. [26] | |||
• | • | • | Jipa and Dillenburger [55] | ||||
• | • | Hu et al. [63] | |||||
• | • | de la Fuente et al. [54] | |||||
• | • | Ali et al. [13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žujović, M.; Obradović, R.; Rakonjac, I.; Milošević, J. 3D Printing Technologies in Architectural Design and Construction: A Systematic Literature Review. Buildings 2022, 12, 1319. https://doi.org/10.3390/buildings12091319
Žujović M, Obradović R, Rakonjac I, Milošević J. 3D Printing Technologies in Architectural Design and Construction: A Systematic Literature Review. Buildings. 2022; 12(9):1319. https://doi.org/10.3390/buildings12091319
Chicago/Turabian StyleŽujović, Maša, Radojko Obradović, Ivana Rakonjac, and Jelena Milošević. 2022. "3D Printing Technologies in Architectural Design and Construction: A Systematic Literature Review" Buildings 12, no. 9: 1319. https://doi.org/10.3390/buildings12091319
APA StyleŽujović, M., Obradović, R., Rakonjac, I., & Milošević, J. (2022). 3D Printing Technologies in Architectural Design and Construction: A Systematic Literature Review. Buildings, 12(9), 1319. https://doi.org/10.3390/buildings12091319