Image Quality Metrics, Personality Traits, and Subjective Evaluation of Indoor Environment Images
Abstract
:1. Introduction
1.1. Visual Preference
1.2. Visual Complexity
1.3. Visual Clarity
1.4. Colorfulness
1.5. Personality
2. Materials and Methods
2.1. Visual Experiment
2.2. Objective Image Quality Metrics
2.3. Personality Test
3. Results
3.1. Correlation between Image Quality Metrics and Subjective Evaluations
3.2. Correlation between Subjective Evaluations
3.3. Correlation between Personality and Subjective Evaluations
4. Discussion
4.1. Subjective Evaluations and Image Quality Metrics
4.2. Personality Traits and Subjective Evaluations
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dockery, D.W.; Spengler, J.D. Personal exposure to respirable particulates and sulfates. J. Air Pollut. Control Assoc. 1981, 31, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Kaas, J.H. The evolution of the complex sensory and motor systems of the human brain. Brain Res. Bull. 2008, 75, 384–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felder, R.M.; Spurlin, J. Applications, reliability and validity of the index of learning styles. Int. J. Eng. Educ. 2005, 21, 103–112. [Google Scholar]
- Soheilian, M.; Fischl, G.; Aries, M. Smart lighting application for energy saving and user well-being in the residential environment. Sustainability 2021, 13, 6198. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, Q.; Cao, S. Development and implementation of a self-optimizable smart lighting system based on learning context in classroom. Int. J. Environ. Res. Public Health 2020, 17, 1217. [Google Scholar] [CrossRef] [Green Version]
- Gagliardi, G.; Lupia, M.; Cario, G.; Tedesco, F.; Gaccio, F.C.; Scudo, F.L.; Casavola, A. Advanced adaptive street lighting systems for smart cities. Smart Cities 2020, 3, 1495–1512. [Google Scholar] [CrossRef]
- De Angelis, A.; Moschitta, A.; Russo, F.; Carbone, P. Image quality assessment: An overview and some metrological considerations. In Proceedings of the 2007 IEEE International Workshop on Advanced Methods for Uncertainty Estimation in Measurement, Sardinia, Italy, 16–18 July 2007; pp. 47–52. [Google Scholar]
- Pedersen, M.; Hardeberg, J.Y. Full-reference image quality metrics: Classification and evaluation. Found. Trends® Comput. Graph. Vis. 2012, 7, 1–80. [Google Scholar]
- Orland, B.; Vining, J.; Ebreo, A. The effect of street trees on perceived values of residential property. Environ. Behav. 1992, 24, 298–325. [Google Scholar] [CrossRef]
- Yabiku, S.T.; Casagrande, D.G.; Farley-Metzger, E. Preferences for landscape choice in a Southwestern desert city. Environ. Behav. 2008, 40, 382–400. [Google Scholar] [CrossRef]
- O’Rourke, T.; Nash, D.; Haynes, M.; Burgess, M.; Memmott, P. Cross-cultural Design and Healthcare Waiting Rooms for Indigenous People in Regional Australia. Environ. Behav. 2022, 54, 89–115. [Google Scholar] [CrossRef]
- Newsham, G.; Richardson, C.; Blanchet, C.; Veitch, J. Lighting quality research using rendered images of offices. Light. Res. Technol. 2005, 37, 93–112. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, A. Visual complexity: Is that all there is? In Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics, San Diego, CA, USA, 19–24 July 2009; pp. 158–166. [Google Scholar]
- Donderi, D.C. Visual complexity: A review. Psychol. Bull. 2006, 132, 73. [Google Scholar] [CrossRef]
- Michailidou, E.; Harper, S.; Bechhofer, S. Visual complexity and aesthetic perception of web pages. In Proceedings of the 26th Annual ACM International Conference on Design of Communication, Lisbon, Portugal, 22–24 September 2008; pp. 215–224. [Google Scholar]
- Osborne, J.W.; Farley, F.H. The relationship between aesthetic preference and visual complexity in abstract art. Psychon. Sci. 1970, 19, 69–70. [Google Scholar] [CrossRef] [Green Version]
- Tuch, A.N.; Bargas-Avila, J.A.; Opwis, K.; Wilhelm, F.H. Visual complexity of websites: Effects on users’ experience, physiology, performance, and memory. Int. J. Hum.-Comput. Stud. 2009, 67, 703–715. [Google Scholar] [CrossRef]
- Nadal, M.; Munar, E.; Marty, G.; Cela-Conde, C. Visual Complexity and Beauty Appreciation: Explaining the Divergence of Results. Empir. Stud. Arts 2010, 28, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Kaya, N.; Erkip, F. Satisfaction in a Dormitory Building: The Effects of Floor Height on the Perception of Room Size and Crowding. Environ. Behav. 2001, 33, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Heath, T.; Smith, S.G.; Lim, B. Tall Buildings and the Urban Skyline: The Effect of Visual Complexity on Preferences. Environ. Behav. 2000, 32, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Durmus, D. Spatial Frequency and the Performance of Image-Based Visual Complexity Metrics. IEEE Access 2020, 8, 100111–100119. [Google Scholar] [CrossRef]
- Hashimoto, K.; Nayatani, Y. Visual clarity and feeling of contrast. Color Res. Appl. 1994, 19, 171–185. [Google Scholar] [CrossRef]
- Durmus, D.; Davis, W. Blur perception and visual clarity in light projection systems. Opt. Express 2019, 27, A216–A223. [Google Scholar] [CrossRef]
- Durmus, D.; Davis, W. Visual clarity and blur acceptability in complex illuminated images. In Light, Energy and the Environment 2018; (E2, FTS, HISE, SOLAR, SSL), OSA Technical Digest; Paper SW2D.4; Optica Publishing Group: Washington, DC, USA, 2018. [Google Scholar]
- ITU-T Recommendation. Subjective Video Quality Assessment Methods for Multimedia Applications; International Telecommunication Union: Geneva, Switzerland, 1999; pp. 34–35. [Google Scholar]
- Commission International de l’Éclairage. ILV: International Lighting Vocabulary; CIE S 017:2020; CIE: Vienna, Austria, 2020. [Google Scholar]
- Palus, H. Colourfulness of the image and its application in image filtering. In Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, 21 December 2005; pp. 884–889. [Google Scholar] [CrossRef]
- Gu, K.; Zhai, G.; Yang, X.; Zhang, W.; Liu, M. Subjective and objective quality assessment for images with contrast change. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 383–387. [Google Scholar] [CrossRef]
- Blumberg, R.; Devlin, A.S. Design issues in hospitals: The adolescent client. Environ. Behav. 2006, 38, 293–317. [Google Scholar] [CrossRef]
- Rosenbluh, E.S.; Owens, G.B.; Pohler, M.J. Art preference and personality. Br. J. Psychol. 1972, 63, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Abello, R.P.; Bernaldez, F.G. Landscape preference and personality. Landsc. Urban Plan. 1986, 13, 19–28. [Google Scholar] [CrossRef]
- Furnham, A.; Avison, M. Personality and preference for surreal paintings. Personal. Individ. Differ. 1997, 23, 923–935. [Google Scholar] [CrossRef]
- Gosling, S.D.; Rentfrow, P.J.; Swann, W.B. A very brief measure of the Big-Five personality domains. J. Res. Personal. 2003, 37, 504–528. [Google Scholar] [CrossRef]
- Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; Torralba, A. Places: A 10 million Image Database for Scene Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1452–1464. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Sturgis, P.; Roberts, C.; Smith, P. Middle Alternatives Revisited: How the neither/nor Response Acts as a Way of Saying ‘I Don’t Know’? Sociol. Methods Res. 2014, 43, 15–38. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Modern Image Quality Assessment. Synth. Lect. Image Video Multimed. Process. 2006, 2, 1–156. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef]
- Vu, P.V.; Chandler, D.M. A Fast Wavelet-Based Algorithm for Global and Local Image Sharpness Estimation. IEEE Signal Process. Lett. 2012, 19, 423–426. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Sekuler, R.; Watamaniuk, S.N.; Blake, R. Perception of visual motion. In Steven’s Handbook of Experimental Psychology: Sensation and Perception, 3rd ed.; Pashler, H., Yantis, S., Eds.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Sreeja, G.; Saraniya, O. Image Fusion Through Deep Convolutional Neural Network. In Deep Learning and Parallel Computing Environment for Bioengineering Systems; Sangaiah, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; Chapter 3; pp. 37–52. [Google Scholar] [CrossRef]
- Graham, D.J.; Field, D.J. Variations in Intensity Statistics for Representational and Abstract Art, and for Art from the Eastern and Western Hemispheres. Perception 2008, 37, 1341–1352. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, N.; Motoyoshi, I. Differential Effects of Orientation and Spatial-Frequency Spectra on Visual Unpleasantness. Front. Psychol. 2020, 11, 1342. [Google Scholar] [CrossRef]
- Hasler, D.; Suesstrunk, S.E. Measuring colorfulness in natural images. In Human Vision and Electronic Imaging VIII; SPIE: Bellingham, WA, USA, 2003; Volume 5007, pp. 87–95. [Google Scholar] [CrossRef] [Green Version]
- Kukkonen, H.; Rovamo, J.; Tiippana, K.; Näsänen, R. Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold. Vis. Res. 1993, 33, 1431–1436. [Google Scholar] [CrossRef]
- Pratt, W.K. Introduction to Digital Image Processing; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Vatsa, M.; Singh, R.; Mitra, P.; Noore, A. Signature verification using static and dynamic features. In Proceedings of the International Conference on Neural Information Processing, Calcutta, India, 22–25 November 2004; pp. 350–355. [Google Scholar]
- Nigam, I.; Vatsa, M.; Singh, R. Leap signature recognition using HOOF and HOT features. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5012–5016. [Google Scholar]
- Catanzaro, B.; Su, B.Y.; Sundaram, N.; Lee, Y.; Murphy, M.; Keutzer, K. Efficient, high-quality image contour detection. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2381–2388. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Shanmugavadivu, P.; Sivakumar, V. Fractal Dimension Based Texture Analysis of Digital Images. Procedia Eng. 2012, 38, 2981–2986. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, Y.; Ohno, Y.; Oh, S. Vision experiment on verification of hunt effect for lighting. In Proceedings of the 29th CIE Session, Washington, DC, USA, 14–22 June 2019; pp. 496–504. [Google Scholar]
- Durmus, D.; Davis, W. Appearance of achromatic colors under optimized light source spectrum. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Ponomarenko, N.; Lukin, V.; Egiazarian, K.; Astola, J.; Carli, M.; Battisti, F. Color image database for evaluation of image quality metrics. In Proceedings of the 2008 IEEE 10th workshop on multimedia signal processing, Cairns, Australia, 8–10 October 2008; pp. 403–408. [Google Scholar]
- Silva, L.E.V.; Filho, A.S.; Fazan, V.P.S.; Felipe, J.C.; Junior, L.M. Two-dimensional sample entropy: Assessing image texture through irregularity. Biomed. Phys. Eng. Express 2016, 2, 045002. [Google Scholar] [CrossRef]
- Ma, C.; Yang, C.-Y.; Yang, X.; Yang, M.-H. Learning a no-reference quality metric for single-image super-resolution. Comput. Vis. Image Underst. 2017, 158, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tourancheau, S.; Autrusseau, F.; Sazzad, Z.P.; Horita, Y. Impact of subjective dataset on the performance of image quality metrics. In Proceedings of the 2008 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 365–368. [Google Scholar]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Mahmoudzadeh, P.; Afacan, Y.; Adi, M.N. Analyzing occupants’ control over lighting systems in office settings using immersive virtual environments. Build. Environ. 2021, 196, 107823. [Google Scholar] [CrossRef]
- Rogowitz, B.E.; Rushmeier, H.E. Are image quality metrics adequate to evaluate the quality of geometric objects? In Human Vision and Electronic Imaging VI; SPIE: Bellingham, WA, USA, 2001; Volume 4299, pp. 340–348. [Google Scholar]
- Durmus, D. Real-time sensing and control of integrative horticultural lighting systems. J-Multidisciplinary Scientific Journal 2020, 3, 20. [Google Scholar] [CrossRef]
- Chun, S.; Lee, C.S.; Jang, J.S. Real-time smart lighting control using human motion tracking from depth camera. J. Real-Time Image Process. 2015, 10, 805–820. [Google Scholar] [CrossRef]
- Shankar, A.; Garg, P.; Bansal, D. Smart Lighting System for Commercial Buildings using Digital Camera. In 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022; IEEE: Piscataway, NJ, USA, 2022; Volume 1, pp. 890–894. [Google Scholar]
- Wang, Y.; Durmus, D. Variability in image quality assessment metrics with different image capturing devices. In Proceedings of the Optica Advanced Photonics Congress, Maastricht, The Netherlands, 24–28 July 2022; Optica Foundation: Washington, DC, USA, 2022. Paper PvM3H.5. [Google Scholar]
- Liang, C.K.; Lin, T.H.; Wong, B.Y.; Liu, C.; Chen, H.H. Programmable aperture photography: Multiplexed light field acquisition. In ACM SIGGRAPH 2008 Papers; ACM: New York, NY, USA, 2008; pp. 1–10. [Google Scholar]
- Durmus, D. Optimizing a Three-channel sensor spectral sensitivity using a genetic algorithm. In Proceedings of the OSA Advanced Photonics Congress: Optical Devices and Materials for Solar Energy and Solid-State Lighting, Washington, DC, USA, 26–29 July 2021; Optica Foundation: Washington, DC, USA, 2021. Paper JTu1A-23. [Google Scholar]
- Jana, S.; Narayanan, A.; Shmatikov, V. A scanner darkly: Protecting user privacy from perceptual applications. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 19–22 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 349–363. [Google Scholar]
- Wang, Y.; Song, X.; Xu, T.; Feng, Z.; Wu, X.J. From RGB to depth: Domain transfer network for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4280–4290. [Google Scholar] [CrossRef]
- Schiff, J.; Meingast, M.; Mulligan, D.K.; Sastry, S.; Goldberg, K. Respectful cameras: Detecting visual markers in real-time to address privacy concerns. In Protecting Privacy in Video Surveillance; Springer: London, UK, 2009; pp. 65–89. [Google Scholar]
- Miraftabzadeh, S.A.; Rad, P.; Choo, K.K.R.; Jamshidi, M. A privacy-aware architecture at the edge for autonomous real-time identity reidentification in crowds. IEEE Internet Things J. 2017, 5, 2936–2946. [Google Scholar] [CrossRef]
Avg. | Max. | Min. | Std. Dev. | 95% CI | |
---|---|---|---|---|---|
MLV | 0.130 | 0.190 | 0.070 | 0.020 | (0.124, 0.136) |
BRISQUE | 26 | 50 | 14 | 7 | (24,28) |
Rspt | 228 | 627 | 96 | 97 | (201,255) |
SI | 68 | 109 | 40 | 13 | (64, 72) |
Spa. freq. slope | −1.050 | −0.850 | −1.340 | 0.130 | (−1.086, −1.014) |
Entropy (S) | 8.00 | 7.93 | 6.48 | 0.30 | (7.92, 8.08) |
Colorfulness (M) | 34 | 75 | 7 | 18 | (29, 39) |
RMS contrast | 212 | 299 | 117 | 48 | (199, 225) |
Euler | −13 | 550 | −1233 | 308 | (−98, 72) |
Energy (E) | 282,159 | 568,800 | 48,241 | 122,408 | (248,230, 316,088) |
Contour | 538 | 1354 | 48 | 291 | (457, 619) |
Fractal dimension | 1.920 | 1.920 | 1.912 | 0.001 | (1.9197, 1.9203) |
Extraversion | Agreeableness | Conscientiousness | Emotional Stability | Openness to Experience |
---|---|---|---|---|
1. Extraverted, enthusiastic | 7. Sympathetic, warm | 3. Dependable, Self-disciplined | 9. Calm, emotionally stable | 5. Open to new experiences, complex |
6. Reserved, quiet | 2. Critical, quarrelsome | 8. Disorganized, careless | 4. Anxious, easily upset | 10. Conventional, uncreative |
Preference | Complexity | Clarity | Colorfulness | |
---|---|---|---|---|
MLV | rs = −0.030 p = 0.839 | rs = 0.363 p = 0.010 | rs = 0.222 p = 0.121 | rs = 0.262 p = 0.066 |
BRISQUE | rs = −0.060 p = 0.679 | rs = −0.318 p = 0.024 | rs = −0.075 p = 0.603 | rs = −0.152 p = 0.293 |
Rspt | rs = −0.116 p = 0.424 | rs = 0.153 p = 0.288 | rs = −0.191 p = 0.184 | rs = 0.096 p = 0.509 |
SI | rs = −0.080 p = 0.579 | rs = 0.388 p = 0.005 | rs = 0.337 p = 0.017 | rs = 0.288 p = 0.042 |
Spa. freq. slope | rs = −0.067 p = 0.642 | rs = 0.217 p = 0.129 | rs = −0.168 p = 0.245 | rs = 0.190 p = 0.186 |
Entropy (S) | rs = 0.144 p = 0.318 | rs = 0.249 p = 0.081 | rs = 0.304 p = 0.032 | rs = 0.371 p = 0.008 |
Colorfulness (M) | rs = 0.083 p = 0.564 | rs = 0.268 p = 0.060 | rs = −0.034 p = 0.815 | rs = 0.727 p < 0.001 |
RMS contrast | rs = 0.040 p = 0.784 | rs = 0.044 p = 0.764 | rs = 0.088 p = 0.543 | rs = 0.163 p = 0.258 |
Euler | rs = −0.117 p = 0.420 | rs = 0.295 p = 0.038 | rs = −0.149 p = 0.300 | rs = 0.256 p = 0.073 |
Energy (E) | rs = −0.002 p = 0.990 | rs = −0.201 p = 0.163 | rs = −0.007 p = 0.964 | rs = −0.356 p = 0.011 |
Contour | rs = 0.072 p = 0.620 | rs = 0.419 p = 0.002 | rs = 0.191 p = 0.184 | rs = 0.389 p = 0.005 |
Fractal dimension | rs = 0.172 p = 0.233 | rs = −0.275 p = 0.053 | rs = −0.103 p = 0.176 | rs = −0.356 p = 0.011 |
Complexity | Clarity | Colorfulness | |
---|---|---|---|
Preference | p = 0.463 r = 0.073 | p < 0.001 r = 0.433 | p = 0.001 r = 0.324 |
Complexity | p < 0.001 r = 0.344 | p < 0.001 r = 0.353 | |
Clarity | p < 0.001 r = 0.613 |
Extraversion | Agreeableness | Conscientiousness | Emotional Stability | Openness to Experience | |
---|---|---|---|---|---|
Standard item | 1. Extraverted, enthusiastic | 7. Sympathetic, warm | 3. Dependable, self-disciplined | 9. Calm, emotionally stable | 5. Open to new experiences, complex |
Recoded reverse-scored item | 6. Reserved, quiet | 2. Critical, quarrelsome | 8. Disorganized, careless | 4. Anxious, easily upset | 10. Conventional, uncreative |
Cronbach’s alpha | 0.91 | 0.48 | 0.68 | 0.7 | 0.42 |
Extraversion | Agreeableness | Conscientiousness | Emotional Stability | Openness to Experience | |
---|---|---|---|---|---|
Preference | rs = 0.111 p = 0.496 | rs = −0.181 p = 0.265 | rs = −0.093 p = 0.570 | rs = −0.043 p = 0.793 | rs = 0.167 p = 0.304 |
Complexity | rs = 0.084 p = 0.608 | rs = −0.065 p = 0.690 | rs = 0.112 p = 0.492 | rs = −0.120 p = 0.463 | rs = 0.188 p = 0.188 |
Clarity | rs = −0.004 p = 0.979 | rs = −0.184 p = 0.255 | rs = −0.082 p = 0.616 | rs = −0.255 p = 0.112 | rs = 0.146 p = 0.370 |
Colorfulness | rs = 0.031 p = 0.850 | rs = −0.134 p = 0.415 | rs = −0.041 p = 0.805 | rs = −0.092 p = 0.571 | rs = 0.122 p = 0.452 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Durmus, D. Image Quality Metrics, Personality Traits, and Subjective Evaluation of Indoor Environment Images. Buildings 2022, 12, 2086. https://doi.org/10.3390/buildings12122086
Wang Y, Durmus D. Image Quality Metrics, Personality Traits, and Subjective Evaluation of Indoor Environment Images. Buildings. 2022; 12(12):2086. https://doi.org/10.3390/buildings12122086
Chicago/Turabian StyleWang, Yuwei, and Dorukalp Durmus. 2022. "Image Quality Metrics, Personality Traits, and Subjective Evaluation of Indoor Environment Images" Buildings 12, no. 12: 2086. https://doi.org/10.3390/buildings12122086
APA StyleWang, Y., & Durmus, D. (2022). Image Quality Metrics, Personality Traits, and Subjective Evaluation of Indoor Environment Images. Buildings, 12(12), 2086. https://doi.org/10.3390/buildings12122086