Effects of Different Building Materials and Treatments on Sound Field Characteristics of the Concert Hall
Abstract
:1. Introduction
2. Project Overview
3. In Situ Test
4. Multifunctional Concert Hall Model and Related Parameters
4.1. Acoustic Model and Parameters
4.2. Spatial Location Acoustic Characteristics
4.3. Analysis of Different Building Treatment Options
5. Simulation Results and Analysis
5.1. Analysis of Acoustic Characteristics of Spatial Locations
5.2. Analysis of Acoustic Characteristics of Building Treatments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iannace, G.; Trematerra, A.; Masullo, M. The large theatre of Pompeii: Acoustic evolution. Build. Acoust. 2013, 20, 215–227. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.X.; Li, X.; Guo, F.X.; Tang, S.W.; Lu, X.; Hanif, A. Influence of reactivity and dosage of MgO expansive agent on shrinkage and crack resistance of face slab concrete. Cem. Concr. Compos. 2022, 126, 104333–104345. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Z.Q.; Liu, B.; Zhao, F.; Tang, S.; Jin, M. Effects of fly ash dosage on shrinkage, crack resistance and fractal characteristics of face slab concrete. Fractal Fract. 2022, 6, 335. [Google Scholar] [CrossRef]
- Jambrošić, K.; Domitrović, H.; Horvat, M. The acoustics of a multifunctional concert hall in Zagreb. EuroRegio2016 2016, 1–10. Available online: https://www.bib.irb.hr/823181 (accessed on 15 August 2022).
- Visentin, C.; Prodi, N.; Valeau, V.; Picaut, J. A numerical and experimental validation of the room acoustics diffusion theory inside long rooms. Proceedings of Meetings on Acoustics ICA2013. Acoust. Soc. am. 2013, 19, 015024. [Google Scholar]
- Dolejší, J.; Šturmová, I.; Rychtáriková, M.; Dolejší, J.; Majchráková, B.; Pouzar, L. Acoustical properties of five historical theatres. Akustika 2018, 29, 2–7. [Google Scholar]
- Brill, L.C.; Blevins, M.G.; Wang, L.M. Analysis and virtual modification of the acoustics in the Nebraska Wesleyan University campus theatre auditorium. J. Acoust. Soc. Am. 2014, 136, 2126. [Google Scholar] [CrossRef]
- Quintana, S.; Fernandez, M.D.; Machimbarrena, M. The Circus-Theater of Albacete: Acoustic characterization and analysis of its double stage configuration. Appl. Acoust. 2022, 189, 108574. [Google Scholar] [CrossRef]
- Cairoli, M. Identification of a new acoustic sound field trend in modern catholic churches. Appl. Acoust. 2020, 168, 107426. [Google Scholar] [CrossRef]
- Kamisiński, T.; Rubacha, J.; Pilch, A. The study of sound scattering structures for the purposes of room acoustic enhancement. Acta Phys. Pol. 2010, 118, 83–86. [Google Scholar] [CrossRef]
- Proud, R.; Cox, M.J.; Wotherspoon, S.; Brierley, A.S. A method for identifying sound scattering layers and extracting key characteristics. Methods Ecol. Evol. 2015, 6, 1190–1198. [Google Scholar] [CrossRef] [Green Version]
- Müller-Trapet, M.; Vorländer, M. Uncertainty analysis of standardized measurements of random-incidence absorption and scattering coefficients. J. Acoust. Soc. Am. 2015, 137, 63–74. [Google Scholar] [CrossRef]
- Wu, Y.; Kang, J.; Zheng, W.; Wu, Y. Acoustic comfort in large railway stations. Appl. Acoust. 2020, 160, 107137. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Fang, Y. Three-dimensional acoustic characteristic study of porous metasurface. Compos. Struct. 2017, 176, 1005–1012. [Google Scholar] [CrossRef]
- Huang, S.; Li, S.; Wang, X.; Mao, D. Micro-perforated absorbers with incompletely partitioned cavities. Appl. Acoust. 2017, 126, 114–119. [Google Scholar] [CrossRef]
- Ribeiro, M.R.S. Room Acoustic Quality of a Multipurpose Hall: A Case Study; Centro de Estudos do Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2002. [Google Scholar]
- Peng, Y.X.; Tang, S.W.; Huang, J.S.; Tang, C.; Wang, L.; Liu, Y. Fractal analysis on pore structure and modeling of hydration of magnesium phosphate cement paste. Fractal Fract. 2022, 6, 337. [Google Scholar] [CrossRef]
- Yang, H.M.; Zhang, S.M.; Lei, W.; Chen, P.; Shao, D.K.; Tang, S.W.; Li, J.Z. High-ferrite Portland cement with slag: Hydration, microstructure, and resistance to sulfate attack at elevated temperature. Cem. Concr. Compos. 2022, 130, 104560. [Google Scholar] [CrossRef]
- Wulfrank, T.; Orlowski, R.J. Acoustic analysis of Wigmore Hall, London, in the context of the 2004 refurbishment. Proc. Inst. Acoust. 2006. Available online: https://www.semanticscholar.org/paper/ACOUSTIC-ANALYSIS-OF-WIGMORE-HALL%2C-LONDON%2C-IN-THE-Wulfrank-Acoustics/d1a9114cafd7f25c08e720246aaa906cd316031b (accessed on 15 August 2022).
- San Martin, R.; Arana, M. Predicted and experimental results of acoustic parameters in the new Symphony Hall in Pamplona, Spain. Appl. Acoust. 2006, 67, 1–14. [Google Scholar] [CrossRef]
- Aretz, M.; Orlowski, R. Sound strength and reverberation time in small concert halls. Appl. Acoust. 2009, 70, 1099–1110. [Google Scholar] [CrossRef]
- Kamisiński, T. Acoustic simulation and experimental studies of theatres and concert halls. Acta Phys. Pol. 2010, 118, 78–82. [Google Scholar] [CrossRef]
- Nagy, A.B.; Kotschy, A.; Gade, A.C.; Johannessen, H. Room acoustical modelling differences and their consequences. INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Noise Control Eng. J. 2010, 2010, 3535–3542. [Google Scholar]
- De Sant’Ana, D.Q.; Zannin, P.H.T. Acoustic evaluation of a contemporary church based on in situ measurements of reverberation time, definition, and computer-predicted speech transmission index. Build. Environ. 2011, 46, 511–517. [Google Scholar] [CrossRef]
- Kamisiński, T. Correction of acoustics in historic opera theatres with the use of Schroeder diffuser. Arch. Acoust. 2012, 37, 349–354. [Google Scholar] [CrossRef]
- Pätynen, J.; Tervo, S.; Lokki, T. Analysis of concert hall acoustics via visualizations of time-frequency and spatiotemporal responses. J. Acoust. Soc. Am. 2013, 133, 842–857. [Google Scholar] [CrossRef]
- Song, K.; Kim, K.; Hur, S.; Kwak, J.H.; Park, J.; Yoon, J.R.; Kim, J. Sound pressure level gain in an acoustic metamaterial cavity. Sci. Rep. 2014, 4, 7421. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.; Santos, P.; Almeida, P.; Godinho, L.; Dias, A. Acoustic performance of timber and timber-concrete floors. Constr. Build. Mater. 2015, 101, 684–691. [Google Scholar] [CrossRef]
- Navvab, M.; Heilmann, G. Measured and simulated room acoustic characteristics in three concert halls with unique architectural geometry using beamforming techniques. J. Acoust. Soc. Am. 2017, 141, 3779–3780. [Google Scholar] [CrossRef]
- Nowicka, E. The acoustical assessment of the commercial spaces and buildings. Appl. Acoust. 2020, 169, 107491. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Trematerra, A.; Lombardi, I.; Abeti, M. The acoustic characteristics of the “Dives in Misericordia” Church in Rome. Build. Acoust. 2021, 28, 197–206. [Google Scholar] [CrossRef]
- Tronchin, L.; Merli, F.; Dolci, M. Virtual acoustic reconstruction of the Miners’ Theatre in Idrija (Slovenia). Appl. Acoust. 2021, 172, 107595. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Acoustic characterization of rooms using reverberation time estimation based on supervised learning algorithm. Appl. Acoust. 2021, 11, 1661. [Google Scholar] [CrossRef]
- Huang, J.S.; Li, W.W.; Huang, D.S.; Wang, L.; Chen, E.; Wu, C.; Li, Y. Fractal analysis on pore structure and hydration of magnesium oxysulfate cements by first principle, thermodynamic and microstructure-based methods. Fractal Fract. 2021, 5, 164. [Google Scholar] [CrossRef]
- Foraboschi, P. Masonry does not limit itself to only one structural material: Interlocked masonry versus cohesive masonry. J. Build. 2019, 26, 100831. [Google Scholar] [CrossRef]
- Algargoosh, A.; Soleimani, B.; O’Modhrain, S.; Navvab, M. The impact of the acoustic environment on human emotion and experience: A case study of worship spaces. Build. Acoust. 2022, 29, 85–106. [Google Scholar] [CrossRef]
- Liu, X.G.; Erhao, M.; Liu, J.; Zhang, B.Q.; Niu, D.T.; Wang, Y. Deterioration of an industrial reinforced concrete structure exposed to high temperatures and dry-wet cycles. Eng. Fail. Anal. 2022, 135, 106150. [Google Scholar] [CrossRef]
- Liu, X.G.; Zhang, W.P.; Gu, X.L.; Ye, Z.W. Probability distribution model of stress impact factor for corrosion pits of high-strength prestressing wires. Eng. Struct. 2021, 230, 111686. [Google Scholar] [CrossRef]
Section | Material | Interface Sound Absorption Coefficient at Each Octave | Scattering Coefficient | |||||
---|---|---|---|---|---|---|---|---|
125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | |||
Ceilings | Glass-fiber-reinforced gypsum | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 |
Auditorium floor | Wooden floors | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Carpets | 0.12 | 0.18 | 0.3 | 0.41 | 0.52 | 0.48 | 0.4 | |
Auditorium wall | Wooden panels | 0.15 | 0.12 | 0.1 | 0.08 | 0.08 | 0.08 | 0.1 |
Wooden perforated plates | 0.58 | 0.8 | 0.86 | 0.5 | 0.4 | 0.34 | 0.6 | |
Stage entrance | - | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 | 0.3 |
Auditorium | Seats | 0.32 | 0.43 | 0.49 | 0.48 | 0.51 | 0.54 | 0.7 |
First Floor Receiving Points | x-axis Coordinate | y-axis Interval (m) | Second Floor Receiving Points | x-axis Coordinate | y-axis Interval (m) |
---|---|---|---|---|---|
C15 | 15.00 | 3.00 | L15 | 15.00 | 1.50 |
C9 | 9.00 | 3.00 | L9 | 9.00 | 1.50 |
C3 | 3.00 | 3.00 | L3 | 3.00 | 3.00 |
Number | Ceiling Forms | Absorption Positions | Absorption Areas (m2) |
---|---|---|---|
A1 | Curved ceiling | Rear side wall + rear wall | 658.42 |
A2 | Curved ceiling | Ceiling + rear side wall + rear wall | 1664.94 |
A3 | Curved ceiling | In side wall + rear side wall + rear wall | 1730.15 |
B1 | Flat ceiling | Rear side wall + rear wall | 639.06 |
B2 | Flat ceiling | Ceiling + rear side wall + rear wall | 1512.50 |
B3 | Flat ceiling | In side wall + rear side wall + rear wall | 1854.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Ma, E.; Fan, L.; Liu, J.; Cheng, B.; Jiang, Z. Effects of Different Building Materials and Treatments on Sound Field Characteristics of the Concert Hall. Buildings 2022, 12, 1613. https://doi.org/10.3390/buildings12101613
Yu R, Ma E, Fan L, Liu J, Cheng B, Jiang Z. Effects of Different Building Materials and Treatments on Sound Field Characteristics of the Concert Hall. Buildings. 2022; 12(10):1613. https://doi.org/10.3390/buildings12101613
Chicago/Turabian StyleYu, Ruiguang, Erhao Ma, Li Fan, Jun Liu, Bing Cheng, and Zhilu Jiang. 2022. "Effects of Different Building Materials and Treatments on Sound Field Characteristics of the Concert Hall" Buildings 12, no. 10: 1613. https://doi.org/10.3390/buildings12101613