Building Cooling Requirements under Climate Change Scenarios: Impact, Mitigation Strategies, and Future Directions
Abstract
:1. Introduction
2. Objective and Methods
3. Climate Change Impact on Building Cooling Requirements
3.1. Large Scale Studies
3.2. Climate Zone-A “Tropical”
3.3. Climate Zone-B “Arid”
3.4. Climate Zone-C “Temperate”
3.5. Climate Zone-D “Cold”
4. Potential Solutions and Mitigation Strategies
4.1. Climate Zone-A “Tropical”
4.2. Climate Zone-B “Arid”
4.3. Climate Zone-C “Temperate”
4.4. Climate Zone-D “Cold”
5. Discussion and Critical Analysis
5.1. Future Building Cooling Demand
Study | Climate Zone | Country | City | Emission Scenario | Baseline Year | Projection Year | Cooling Demand Increase |
---|---|---|---|---|---|---|---|
[23] | A | United States | Miami | A2 | 1961–1990 | 2040–2069 | 26.6% |
[22] | Key West | 2050 | 28% | ||||
[25] | Cameroon | Douala | 1970–2000 | 2013–2043 | 19.7% | ||
2045–2075 | 50% | ||||||
[24] | Malaysia | Kuala Lumpur | - | 2000 | 2050 | 8.08% | |
[28] | Ghana | Greater Accra Region | A1B | 2000–2009 | 50% | ||
Ashanti Region | 15% | ||||||
[27] | Brazil | Belém | A2 | 2015 | 70% | ||
[29] | B | Iran | Bushehr | A2 | 1961–1990 | 2060 | 14.32% |
Bandar Abbas | 14.23% | ||||||
Chabahar | 13.27% | ||||||
[23] | United States | Phoenix | 2040–2069 | 17.4% | |||
[32] | Spain | Granada | 2050 | 129.35% | |||
Salamanca | 349.26% | ||||||
[32] | C | UnitedKingdom | Aberdeen | A2 | 1961–1990 | 2050 | 5000% |
London | 1370.68% | ||||||
France | Bordeaux | 227.22% | |||||
Italy | Pescara | 172.14% | |||||
Rome | 143.53% | ||||||
Milan | 260.68% | ||||||
Palermo | 70.7% | ||||||
France | Paris | 427.35% | |||||
Portugal | Porto | 489.98% | |||||
[22] | United States | Daytona Beach | 36% | ||||
Tallahassee | 45% | ||||||
Tampa | 34% | ||||||
Jacksonville | 1991–2005 | 40% | |||||
Orlando | 35% | ||||||
Pensacola | 42% | ||||||
[34] | China | Hong Kong | RCP4.5 | 1979–2003 | 2065 | 29.79% | |
RCP8.5 | 36.71% | ||||||
[35] | Italy | Milan | RCP4.5 | 1982–1999 | 2021–2040 | 47.1% | |
RCP8.5 | 56.4% | ||||||
[37] | Austria | Vienna | A1B | 1980–2008 | 2050 | 28–92% | |
[46] | Sweden | Växjö | RCP4.5 | 1996–2005 | 39% | ||
[43] | Taiwan | Taipei | A1B | 1993–2014 | 59% | ||
[27] | Brazil | Curitiba | A2 | 2015 | 210% | ||
Florianopolis | 120% | ||||||
[48] | D | Canada | Ontario | A2 | 1959–1989 | 2070 | 15% to 126% |
[23] | United States | Chicago | 1961–1990 | 2040–2069 | 24.8% | ||
[32] | Romania | Cluj-Napoca | 2050 | 472.37% | |||
Denmark | Copenhagen | 928.28% | |||||
Sweden | Göteborg | 9945.45% | |||||
Czech Republic | Prague | 973.74% | |||||
[51] | Finland | Vantaa | 1980–2009 | 29% | |||
[49] | Canada | Quebec | RCP8.5 | 1998–2014 | 2056–2075 | 34.6% | |
Toronto | 32.2% | ||||||
[47] | China | Jinan | A2 | 2020 | 2050 | 30.7% |
Study | Climate Zone | Country | City | Emission Scenario | Baseline Year | Projection Year | Cooling Demand Increase |
---|---|---|---|---|---|---|---|
[14] | A | United States | Miami | A2 | 1960 | 2080 | 50% |
[22] | United States | Key West Florida | 1961–1990 | 48% | |||
[24] | Malaysia | Kuala Lumpur | - | 2000 | 11.7% | ||
[27] | Brazil | Belém | A2 | 2015 | 111% | ||
[59] | B | UAE | Al-Ain | - | 1961–1990 | 2100 | 23.5% |
[32] | Spain | Granada | A2 | 2080 | 239% | ||
Salamanca | 645% | ||||||
[32] | C | United Kingdom | Aberdeen | A2 | 1961–1990 | 2080 | 23,600% |
Belfast | 1100% | ||||||
London | 3695% | ||||||
France | Bordeaux | 434% | |||||
Italy | Milan | 468% | |||||
Palermo | 142% | ||||||
Pescara | 313% | ||||||
Rome | 272% | ||||||
France | Paris | 853% | |||||
Portugal | Porto | 937% | |||||
[22] | United States | Tallahassee | 80% | ||||
Tampa | 59% | ||||||
Daytona Beach | 62% | ||||||
[39] | Switzerland | Switzerland | - | 2050–2100 | 223% to 1050% | ||
[34] | China | Hong Kong | RCP4.5 | 1979–2003 | 2090 | 27.27% | |
RCP8.5 | 54.25% | ||||||
[42] | Japan | Tokyo | A2 | 1981–2000 | 2090 | 32.8% | |
Naha | 19.8% | ||||||
[35] | Italy | Milan | RCP4.5 | 1982–1999 | 2081–2099 | 73.7% | |
RCP8.5 | 174.3% | ||||||
[22] | United States | Jacksonville | A2 | 1991–2005 | 2080 | 71% | |
Orlando | 61% | ||||||
Pensacola | 74% | ||||||
[43] | Taiwan | Taipei | A1B | 1993–2014 | 2080 | 82% | |
[33] | United States | San Antonio | SSP126 | 2020 | 2100 | 24.5% | |
SSP245 | 33.3% | ||||||
SSP370 | 57.8% | ||||||
SSP585 | 87% | ||||||
New York | SSP126 | 37.1% | |||||
SSP245 | 47.5% | ||||||
SSP370 | 85.3% | ||||||
SSP585 | 121% | ||||||
[41] | Australia | Canberra | A2 | - | 2080 | 19.6% | |
Brisbane | - | 2080 | 19% to 23.9% | ||||
[32] | D | Romania | Cluj-Napoca | A2 | 1961–1990 | 2080 | 871% |
Denmark | Copenhagen | 2297% | |||||
Sweden | Göteborg | 30,945% | |||||
Czech Republic | Prague | 2318% | |||||
[14] | United States | Chicago | 1960 | 80% | |||
Minneapolis | 100% | ||||||
[42] | Japan | Sapporo | 1981–2000 | 2090 | 46.7% | ||
[51] | Finland | Vantaa | 1980–2009 | 2100 | 82% | ||
[47] | China | Jinan | 2020 | 2080 | 80.3% | ||
[50] | Lithuania | Kaunas | RCP8.5 | 2020 | 2080 | 1.8% to 2.1% |
5.2. Effect of Mitigation Strategies on Building Cooling Demand
Study | Climate Zone | Country | City | Strategies | Category | Cooling Demand Reduction |
---|---|---|---|---|---|---|
[56] | A | Madagascar | Antsiranana MahajungaToamasinaTaolagnaro | Thermal insulation | Thermal insulation | −9.6% to −12.1% |
Thermal insulation and PCM. | ||||||
Windows shading | Solar shading | −3.8% | ||||
Thermal insulation and windows shading. | Thermal insulation and solar shading. | −19.4% | ||||
[28] | Ghana | Greater Accra Region | Thermal insulation | Thermal insulation | −11.9% | |
WWR | WWR | −2.8% | ||||
Window solar shading | Solar shading | −6.1% | ||||
[52] | United States | Miami | Roof and wall thermal resistance. | Thermal insulation | −3.5% to −5% | |
Window visible transmittance | Efficient window | −2.73% | ||||
Window solar transmittance | −2.73% | |||||
Window thermal conductivity k−value | −1.97% | |||||
[60] | B | Qatar | Doha | Double glazed window | Efficient window | −5% |
Lighting efficiency | Efficient lighting | −10% | ||||
Light color building shell | Light color building shell | −12% | ||||
Wall insulation u−value (-) | Thermal insulation | −27% | ||||
Indoor comfort temperature | Indoor comfort temperature | −14% | ||||
[58] | Iran | Tehran | Urban morphology | Urban morphology | −10% | |
[59] | UAE | Al-Ain | Thermal insulation | Thermal insulation | −19.3% | |
Thermal mass | Thermal mass | −13.4% | ||||
Solar shading devices | Solar shading | −3.7% | ||||
Double glazing system | Efficient window | −5.4% | ||||
WWR | WRR | −3.70% | ||||
[61] | C | Palestine | Gaza | Natural ventilation | Natural ventilation | 24.40% |
Wall thermal insulation | Thermal insulation | −53.50% | ||||
Window shading | Solar shading | −64.3% | ||||
[62] | China | Hong Kong | Window shading Glazing system Window openable area Window insulation Wall solar absorptance Wall insulation | Solar shading, efficient window, natural ventilation and thermal insulation. | −55.10% | |
[41] | Australia | Canberra | Wall insulation Shading deviceWindow type | Thermal insulation, solar shading and efficient window. | −56% | |
Brisbane | −49% | |||||
[42] | Japan | Tokyo | Efficient glazing Thermal insulation Indoor comfort temperature Shading device Night cooling | Efficient window, thermal insulation and indoor comfort. temperature, solar shading and natural ventilation. | −63.4% | |
Naha | −50.2% | |||||
[43] | Taiwan | Taipei | Thermal insulation | Thermal insulation | −54.5% to −70.9% | |
Shading devices | Solar shading | −65.5% | ||||
[42] | D | Japan | Sapporo | Efficient glazing Thermal insulation Indoor comfort temperature Shading devices Night cooling | Efficient window, thermal insulation and indoor comfort. Temperature, solar shading and natural ventilation. | −79.9% |
Study | Climate Zone | Country | City | Strategies | Category | Cooling Demand Reduction | |
---|---|---|---|---|---|---|---|
Target Year | % | ||||||
[52] | A | United States | Miami | Roof and wall thermal resistance | Thermal insulation | 2050 | −3.5 to −5% |
Window visible transmittance | Efficient window | −3.13% to−3.35% | |||||
Window solartransmittance | |||||||
Window thermal conductivity | |||||||
[28] | Ghana | Greater Accra Region | Thermal insulation | Thermal insulation | −7.2% | ||
WRR | WRR | −1.9% | |||||
Window solar shading | Solar shading | −3.4% | |||||
[59] | B | UAE | Al−Ain | Thermal insulation | Thermal insulation | 2050 | −19.7% |
Thermal mass | Thermal mass | −12.6% | |||||
Solar shading devices | Solar shading | −3.4% | |||||
Double glazing system | Efficient window | −5.5% | |||||
WRR | WRR | −3.9% | |||||
[35] | C | Italy | Milan | Envelope thermal insulation | Thermal insulation | 2021–2040 | −15.6% to −19.7% |
[63] | Switzerland | Window shading | Solar shading | 2050 | −71% | ||
Night ventilation | Natural ventilation | −38% | |||||
Window shading and night ventilation. | Solar shading and natural ventilation. | −84% | |||||
[43] | Taiwan | Taipei | Thermal insulation | Thermal insulation | −31.3 to −42.3% | ||
Shading devices | Solar shading | −37.5% | |||||
[49] | D | Canada | Quebec | Wall insulation andtriple glazing | Thermal insulation and efficient window | 2056–2075 | +19.5% |
Toronto | +22.2% |
Study | Climate Zone | Country | City | Strategies | Category | Cooling Demand Reduction | |
---|---|---|---|---|---|---|---|
Target Year | % | ||||||
[52] | A | United States | Miami | Roof and wall thermal resistance. | Thermal insulation | 2080 | −3.5% to −5% |
Window visible transmittance | Efficient window | −3.45% to −3.5% | |||||
Window solar transmittance | |||||||
Window thermal conductivity k-value | |||||||
[59] | B | UAE | Al-Ain | Thermal insulation | Thermal insulation | 2100 | −15.5% |
Thermal mass | Thermal mass | −18.6% | |||||
Solar shading devices. | Solar shading | −2.9% | |||||
Double glazing system | Efficient window | −10.5% | |||||
WRR | WRR | −9% | |||||
[62] | C | China | Hong Kong | Window shading | Solar shading, efficient window, natural ventilation, and thermal insulation | 2090 | −56.7% |
glazing system | |||||||
Window openable area | |||||||
Window insulation | |||||||
Wall solar absorptance | |||||||
Wall insulation | |||||||
[35] | Italy | Milan | Envelope thermal insulation | Thermal insulation | 2081–2099 | −24.3% to −63.5% | |
[41] | Australia | Canberra | Wall insulation Shading device Window type | Thermal insulation, solar shading and efficient window. | 2080 | −54% | |
Brisbane | −46.7% | ||||||
[42] | Japan | Tokyo | Efficient glazing Thermal insulation Indoor comfort temperature Shading device Night cooling | Efficient window, thermal insulation, indoor comfort temperature, solar shading and natural ventilation. | 2090 | −57.4% | |
Naha | −43.5% | ||||||
[43] | Taiwan | Taipei | Thermal insulation | Thermal insulation | 2080 | −22.8% to −33.2% | |
Shading devices | Solar shading | −27.7% | |||||
[42] | D | Japan | Sapporo | Efficient glazing Thermal insulation Indoor comfort temperature Shading devices Night cooling | Efficient window, thermal insulation, indoor comfort temperature, solar shading and natural ventilation. | 2090 | −71.97% |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Tahir, F.; Ajjur, S.B.; Serdar, M.Z.; Al-Humaiqani, M.M.A.; Kim, D.; Al-Thani, S.K.; Al-Ghamdi, S.G. Qatar Climate Change Conference 2021: A Platform for Addressing Key Climate Change Topics Facing Qatar and the World; Al-Ghamdi, S.G., Al-Thani, S.K., Eds.; Hamad bin Khalifa University Press (HBKU Press): Doha, Qatar, 2021. [Google Scholar]
- Afzal, M.S.; Tahir, F.; Al-Ghamdi, S.G. Recommendations and Strategies to Mitigate Environmental Implications of Artificial Island Developments in the Gulf. Sustainability 2022, 14, 5027. [Google Scholar] [CrossRef]
- Bandara, J.S.; Cai, Y. The Impact of Climate Change on Food Crop Productivity, Food Prices and Food Security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- Mekonnen, A.; Tessema, A.; Ganewo, Z.; Haile, A. Climate Change Impacts on Household Food Security and Farmers Adaptation Strategies. J. Agric. Food Res. 2021, 6, 100197. [Google Scholar] [CrossRef]
- Tahir, F.; Al-Ghamdi, S.G. Integrated MED and HDH Desalination Systems for an Energy-Efficient Zero Liquid Discharge (ZLD) System. Energy Rep. 2022, 8, 29–34. [Google Scholar] [CrossRef]
- Pakmehr, S.; Yazdanpanah, M.; Baradaran, M. How Collective Efficacy Makes a Difference in Responses to Water Shortage Due to Climate Change in Southwest Iran. Land Use Policy 2020, 99, 104798. [Google Scholar] [CrossRef]
- Andrić, I.; Koc, M.; Al-Ghamdi, S.G. A Review of Climate Change Implications for Built Environment: Impacts, Mitigation Measures and Associated Challenges in Developed and Developing Countries. J. Clean. Prod. 2019, 211, 83–102. [Google Scholar] [CrossRef]
- Azimi Fereidani, N.; Rodrigues, E.; Gaspar, A.R. A Review of the Energy Implications of Passive Building Design and Active Measures under Climate Change in the Middle East. J. Clean. Prod. 2021, 305, 127152. [Google Scholar] [CrossRef]
- Roberts, S. Effects of Climate Change on the Built Environment. Energy Policy 2008, 36, 4552–4557. [Google Scholar] [CrossRef]
- Hrabovszky-Horváth, S.; Pálvölgyi, T.; Csoknyai, T.; Talamon, A. Generalized Residential Building Typology for Urban Climate Change Mitigation and Adaptation Strategies: The Case of Hungary. Energy Build. 2013, 62, 475–485. [Google Scholar] [CrossRef]
- Tahir, F.; Baloch, A.A.B.; Al-Ghamdi, S.G. Impact of Climate Change on Solar Monofacial and Bifacial Photovoltaics (PV) Potential in Qatar. Energy Rep. 2022, 8, 518–522. [Google Scholar] [CrossRef]
- Al Huneidi, D.I.; Tahir, F.; Al-Ghamdi, S.G. Energy Modeling and Photovoltaics Integration as a Mitigation Measure for Climate Change Impacts on Energy Demand. Energy Rep. 2022, 8, 166–171. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q. Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States. Energy Build. 2014, 82, 428–436. [Google Scholar] [CrossRef]
- Li, D.H.W.; Yang, L.; Lam, J.C. Impact of Climate Change on Energy Use in the Built Environment in Different Climate Zones—A Review. Energy 2012, 42, 103–112. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Cao, J.; Cheng, S.; Zhang, R. Effect of Climate Zone Change on Energy Consumption of Office and Residential Buildings in China. Theor. Appl. Climatol. 2021, 144, 353–361. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the K¨oppen-Geiger Climate Classificatio. Permafr. Periglac. Process. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Gi, K.; Sano, F.; Hayashi, A.; Tomoda, T.; Akimoto, K. A Global Analysis of Residential Heating and Cooling Service Demand and Cost-Effective Energy Consumption under Different Climate Change Scenarios up to 2050. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 51–79. [Google Scholar] [CrossRef]
- Levesque, A.; Pietzcker, R.C.; Baumstark, L.; De Stercke, S.; Grübler, A.; Luderer, G. How Much Energy Will Buildings Consume in 2100? A Global Perspective within a Scenario Framework. Energy 2018, 148, 514–527. [Google Scholar] [CrossRef]
- Mastrucci, A.; van Ruijven, B.; Byers, E.; Poblete-Cazenave, M.; Pachauri, S. Global Scenarios of Residential Heating and Cooling Energy Demand and CO2 Emissions. Clim. Chang. 2021, 168, 14. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the Buildings—Past, Present and Future. Energy Build. 2016, 128, 617–638. [Google Scholar] [CrossRef]
- Jiang, A.; Zhu, Y.; Elsafty, A.; Tumeo, M. Effects of Global Climate Change on Building Energy Consumption and Its Implications in Florida. Int. J. Constr. Educ. Res. 2018, 14, 22–45. [Google Scholar] [CrossRef]
- Shen, P. Impacts of Climate Change on U.S. Building Energy Use by Using Downscaled Hourly Future Weather Data. Energy Build. 2017, 134, 61–70. [Google Scholar] [CrossRef]
- Yau, Y.H.; Hasbi, S. A Comprehensive Case Study of Climate Change Impacts on the Cooling Load in an Air-Conditioned Office Building in Malaysia. In Proceedings of the Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 143, pp. 295–300. [Google Scholar]
- Kameni Nematchoua, M.; Roshan, G.R.; Tchinda, R.; Nasrabadi, T.; Ricciardi, P. Climate Change and Its Role in Forecasting Energy Demand in Buildings: A Case Study of Douala City, Cameroon. J. Earth Syst. Sci 2015, 130, 269–281. [Google Scholar] [CrossRef]
- Ukey, R.; Rai, A.C. Impact of Global Warming on Heating and Cooling Degree Days in Major Indian Cities. Energy Build. 2021, 244, 111050. [Google Scholar] [CrossRef]
- Invidiata, A.; Ghisi, E. Impact of Climate Change on Heating and Cooling Energy Demand in Houses in Brazil. Energy Build. 2016, 130, 20–32. [Google Scholar] [CrossRef]
- Dodoo, A.; Ayarkwa, J. Effects of Climate Change for Thermal Comfort and Energy Performance of Residential Buildings in a Sub-Saharan African Climate. Buildings 2019, 9, 215. [Google Scholar] [CrossRef]
- Roshan, G.; Arab, M.; Klimenko, V. Modeling the Impact of Climate Change on Energy Consumption and Carbon Dioxide Emissions of Buildings in Iran. J. Environ. Health Sci. Eng. 2019, 17, 889–906. [Google Scholar] [CrossRef]
- Andric, I.; Al-Ghamdi, S.G. Climate Change Implications for Environmental Performance of Residential Building Energy Use: The Case of Qatar. In Proceedings of the Energy Reports; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 6, pp. 587–592. [Google Scholar]
- Heracleous, C.; Michael, A.; Savvides, A.; Hayles, C. Climate Change Resilience of School Premises in Cyprus: An Examination of Retrofit Approaches and Their Implications on Thermal and Energy Performance. J. Build. Eng. 2021, 44, 103358. [Google Scholar] [CrossRef]
- Ciancio, V.; Salata, F.; Falasca, S.; Curci, G.; Golasi, I.; de Wilde, P. Energy Demands of Buildings in the Framework of Climate Change: An Investigation across Europe. Sustain. Cities Soc. 2020, 60, 102213. [Google Scholar] [CrossRef]
- Chakraborty, D.; Alam, A.; Chaudhuri, S.; Başağaoğlu, H.; Sulbaran, T.; Langar, S. Scenario-Based Prediction of Climate Change Impacts on Building Cooling Energy Consumption with Explainable Artificial Intelligence. Appl. Energy 2021, 291, 116807. [Google Scholar] [CrossRef]
- Liu, S.; Kwok, Y.T.; Lau, K.K.L.; Tong, H.W.; Chan, P.W.; Edward, N.G. Development and Application of Future Design Weather Data for Evaluating the Building Thermal-Energy Performance in Subtropical Hong Kong. Energy Build. 2020, 209, 109696. [Google Scholar] [CrossRef]
- Tootkaboni, M.P.; Ballarini, I.; Corrado, V. Analysing the Future Energy Performance of Residential Buildings in the Most Populated Italian Climatic Zone: A Study of Climate Change Impacts. Energy Rep. 2021, 7, 8548–8560. [Google Scholar] [CrossRef]
- De Masi, R.F.; Gigante, A.; Ruggiero, S.; Vanoli, G.P. Impact of Weather Data and Climate Change Projections in the Refurbishment Design of Residential Buildings in Cooling Dominated Climate. Appl. Energy 2021, 303, 117584. [Google Scholar] [CrossRef]
- Berger, T.; Amann, C.; Formayer, H.; Korjenic, A.; Pospischal, B.; Neururer, C.; Smutny, R. Impacts of Climate Change upon Cooling and Heating Energy Demand of Office Buildings in Vienna, Austria. Energy Build. 2014, 80, 517–530. [Google Scholar] [CrossRef]
- Moazami, A.; Nik, V.M.; Carlucci, S.; Geving, S. Impacts of Future Weather Data Typology on Building Energy Performance— Investigating Long-Term Patterns of Climate Change and Extreme Weather Conditions. Appl. Energy 2019, 238, 696–720. [Google Scholar] [CrossRef]
- Frank, T. Climate Change Impacts on Building Heating and Cooling Energy Demand in Switzerland. Energy Build. 2005, 37, 1175–1185. [Google Scholar] [CrossRef]
- Li, X.; Chambers, J.; Yilmaz, S.; Patel, M.K. A Monte Carlo Building Stock Model of Space Cooling Demand in the Swiss Service Sector under Climate Change. Energy Build. 2021, 233, 110662. [Google Scholar] [CrossRef]
- Bamdad, K.; Cholette, M.E.; Omrani, S.; Bell, J. Future Energy-Optimised Buildings—Addressing the Impact of Climate Change on Buildings. Energy Build. 2021, 231, 110610. [Google Scholar] [CrossRef]
- Shibuya, T.; Croxford, B. The Effect of Climate Change on Office Building Energy Consumption in Japan. Energy Build. 2016, 117, 149–159. [Google Scholar] [CrossRef]
- Huang, K.T.; Hwang, R.L. Future Trends of Residential Building Cooling Energy and Passive Adaptation Measures to Counteract Climate Change: The Case of Taiwan. Appl. Energy 2016, 184, 1230–1240. [Google Scholar] [CrossRef]
- Asimakopoulos, D.A.; Santamouris, M.; Farrou, I.; Laskari, M.; Saliari, M.; Zanis, G.; Giannakidis, G.; Tigas, K.; Kapsomenakis, J.; Douvis, C.; et al. Modelling the Energy Demand Projection of the Building Sector in Greece in the 21st Century. Energy Build. 2012, 49, 488–498. [Google Scholar] [CrossRef]
- Day, A.R.; Jones, P.G.; Maidment, G.G. Forecasting Future Cooling Demand in London. Energy Build. 2009, 41, 942–948. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Bonakdar, F. Effects of Future Climate Change Scenarios on Overheating Risk and Primary Energy Use for Swedish Residential Buildings. In Proceedings of the Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 61, pp. 1179–1182. [Google Scholar]
- Wang, Y.; Lin, H.; Wang, W.; Liu, Y.; Wennersten, R.; Sun, Q. Impacts of Climate Change on the Cooling Loads of Residential Buildings Differences between Occupants with Different Age. Energy Procedia 2017, 142, 2677–2682. [Google Scholar] [CrossRef]
- Berardi, U.; Jafarpur, P. Assessing the Impact of Climate Change on Building Heating and Cooling Energy Demand in Canada. Renew. Sustain. Energy Rev. 2020, 121, 109681. [Google Scholar] [CrossRef]
- Jafarpur, P.; Berardi, U. Effects of Climate Changes on Building Energy Demand and Thermal Comfort in Canadian Office Buildings Adopting Different Temperature Setpoints. J. Build. Eng. 2021, 42, 102725. [Google Scholar] [CrossRef]
- Sabunas, A.; Kanapickas, A. Estimation of Climate Change Impact on Energy Consumption in a Residential Building in Kaunas, Lithuania, Using HEED Software. Energy Procedia 2017, 128, 92–99. [Google Scholar] [CrossRef]
- Jylhä, K.; Jokisalo, J.; Ruosteenoja, K.; Pilli-Sihvola, K.; Kalamees, T.; Seitola, T.; Mäkelä, H.M.; Hyvönen, R.; Laapas, M.; Drebs, A. Energy Demand for the Heating and Cooling of Residential Houses in Finland in a Changing Climate. Energy Build. 2015, 99, 104–116. [Google Scholar] [CrossRef]
- Jiang, A.; O’Meara, A. Accommodating Thermal Features of Commercial Building Systems to Mitigate Energy Consumption in Florida Due to Global Climate Change. Energy Build. 2018, 179, 86–98. [Google Scholar] [CrossRef]
- Paule, B.; Sok, E.; Pantet, S.; Boutiller, J. Electrochromic Glazings: Dynamic Simulation of Both Daylight and Thermal Performance. Energy Procedia 2017, 122, 199–204. [Google Scholar] [CrossRef]
- Khdair, A.I.; Abu Rumman, G.; Basha, M. Developing Building Enhanced with PCM to Reduce Energy Consumption. J. Build. Eng. 2022, 48, 103923. [Google Scholar] [CrossRef]
- Al-Sanea, S.A.; Zedan, M.F.; Al-Hussain, S.N. Effect of Thermal Mass on Performance of Insulated Building Walls and the Concept of Energy Savings Potential. Appl. Energy 2012, 89, 430–442. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Noelson, J.C.V.; Saadi, I.; Kenfack, H.; Andrianaharinjaka, A.Z.F.R.; Ngoumdoum, D.F.; Sela, J.B.; Reiter, S. Application of Phase Change Materials, Thermal Insulation, and External Shading for Thermal Comfort Improvement and Cooling Energy Demand Reduction in an Office Building under Different Coastal Tropical Climates. Sol. Energy 2020, 207, 458–470. [Google Scholar] [CrossRef]
- Gamero-Salinas, J.; Monge-Barrio, A.; Kishnani, N.; López-Fidalgo, J.; Sánchez-Ostiz, A. Passive Cooling Design Strategies as Adaptation Measures for Lowering the Indoor Overheating Risk in Tropical Climates. Energy Build. 2021, 252, 111417. [Google Scholar] [CrossRef]
- Javanroodi, K.; Mahdavinejad, M.; Nik, V.M. Impacts of Urban Morphology on Reducing Cooling Load and Increasing Ventilation Potential in Hot-Arid Climate. Appl. Energy 2018, 231, 714–746. [Google Scholar] [CrossRef]
- Radhi, H. Evaluating the Potential Impact of Global Warming on the UAE Residential Buildings—A Contribution to Reduce the CO2 Emissions. Build. Environ. 2009, 44, 2451–2462. [Google Scholar] [CrossRef]
- Kharseh, M.; Al-Khawaja, M. Retrofitting Measures for Reducing Buildings Cooling Requirements in Cooling-Dominated Environment: Residential House. Appl. Therm. Eng. 2016, 98, 352–356. [Google Scholar] [CrossRef]
- Mushtaha, E.; Salameh, T.; Kharrufa, S.; Mori, T.; Aldawoud, A.; Hamad, R.; Nemer, T. The Impact of Passive Design Strategies on Cooling Loads of Buildings in Temperate Climate. Case Stud. Therm. Eng. 2021, 28, 101588. [Google Scholar] [CrossRef]
- Liu, S.; Kwok, Y.T.; Lau, K.K.L.; Ouyang, W.; Ng, E. Effectiveness of Passive Design Strategies in Responding to Future Climate Change for Residential Buildings in Hot and Humid Hong Kong. Energy Build. 2020, 228, 110469. [Google Scholar] [CrossRef]
- Silva, R.; Eggimann, S.; Fierz, L.; Fiorentini, M.; Orehounig, K.; Baldini, L. Opportunities for Passive Cooling to Mitigate the Impact of Climate Change in Switzerland. Build. Environ. 2021, 208, 108574. [Google Scholar] [CrossRef]
- Andrić, I.; Gomes, N.; Pina, A.; Ferrão, P.; Fournier, J.; Lacarrière, B.; Le Corre, O. Modeling the Long-Term Effect of Climate Change on Building Heat Demand: Case Study on a District Level. Energy Build. 2016, 126, 77–93. [Google Scholar] [CrossRef]
- Nik, V.M.; Mata, E.; Kalagasidis, A.S. Assessing the Efficiency and Robustness of the Retrofitted Building Envelope against Climate Change. Energy Procedia 2015, 78, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Bouchlaghem, N. Optimising the Design of Building Envelopes for Thermal Performance. Autom. Constr. 2000, 10, 101–112. [Google Scholar] [CrossRef]
- Grynning, S.; Time, B.; Matusiak, B. Solar Shading Control Strategies in Cold Climates—Heating, Cooling Demand and Daylight Availability in Office Spaces. Sol. Energy 2014, 107, 182–194. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khourchid, A.M.; Ajjur, S.B.; Al-Ghamdi, S.G. Building Cooling Requirements under Climate Change Scenarios: Impact, Mitigation Strategies, and Future Directions. Buildings 2022, 12, 1519. https://doi.org/10.3390/buildings12101519
Khourchid AM, Ajjur SB, Al-Ghamdi SG. Building Cooling Requirements under Climate Change Scenarios: Impact, Mitigation Strategies, and Future Directions. Buildings. 2022; 12(10):1519. https://doi.org/10.3390/buildings12101519
Chicago/Turabian StyleKhourchid, Ammar M., Salah Basem Ajjur, and Sami G. Al-Ghamdi. 2022. "Building Cooling Requirements under Climate Change Scenarios: Impact, Mitigation Strategies, and Future Directions" Buildings 12, no. 10: 1519. https://doi.org/10.3390/buildings12101519
APA StyleKhourchid, A. M., Ajjur, S. B., & Al-Ghamdi, S. G. (2022). Building Cooling Requirements under Climate Change Scenarios: Impact, Mitigation Strategies, and Future Directions. Buildings, 12(10), 1519. https://doi.org/10.3390/buildings12101519