Research Progress of Urban Floods under Climate Change and Urbanization: A Scientometric Analysis
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources and Screening
2.2. Data Cleaning
2.2.1. Authors
2.2.2. Keywords
2.3. Data Analysis Methods
3. Literature Overview
3.1. Publication Trends
3.2. Cooperation Network Analysis
3.2.1. Country
3.2.2. Institution
3.2.3. Author
3.3. Influential Sources and Documents
4. Research Hotspots and Frontiers
4.1. Research Hotspots Analysis
4.1.1. Keywords Co-Occurrence Analysis
4.1.2. Co-Citation Analysis of Literature
4.2. Research Frontiers Analysis
4.2.1. Overall Change Trend of Keywords
4.2.2. Timeline Graph Analysis
4.2.3. Time Zone Chart Analysis of Keywords
4.3. Comparative Analysis of Keywords Density Map
4.3.1. Comparison of Three Time Stages
4.3.2. Comparison of the Last Three Years
5. Conclusions
- (1)
- Two stages were identified for the field by a comprehensive analysis of the literature, namely the first stage (2006–2015) and the second stage (2016—present). The number of publications in the urban floods field was low until 2015, but since then it has progressively increased. In total, 61.24% of the articles were published over the past five years (2016–2020).
- (2)
- Seven main clusters of keywords were found through the clustering map generated by VOSviewer. The dominant one is mainly focused on the methods of model building and simulation to research the hazard and risk of urban floods. Another major cluster pays attention to the pollution of urban stormwater, with a clear emphasis on heavy metal, phosphorus, and nitrogen. The third one focuses on vulnerability and resilience under climate change and urbanization. Besides, other clusters also research the management of urban stormwater, low impact development, and green infrastructure.
- (3)
- The research focus has gradually shifted from water quality and urban stormwater management to urban flood vulnerability and resilience with the development of urbanization and climate change, and the sustainability of urban development has become an enduring topic. A more macro and ecological perspective was taken by a number of researchers who call for permeable grounds, such as parks, rather than concrete underlying surfaces in the process of urban planning as the solution to urban flood problems, reducing the loss of life and property.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Leng, G.; Su, J.; Ren, Y.; Zhou, Q.; Leng, G.; Su, J.; Ren, Y. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef]
- Rivers, E.; McMillan, S.; Bell, C.; Clinton, S.; Rivers, E.; McMillan, S.; Bell, C.; Clinton, S. Effects of Urban Stormwater Control Measures on Denitrification in Receiving Streams. Water 2018, 10, 1582. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, H.; Wang, D.; Ke, X.; Li, S.; Huang, S.; Yang, Y.; Guo, H.; Wang, D.; Ke, X.; et al. Flood vulnerability and resilience assessment in China based on super-efficiency DEA and SBM-DEA methods. J. Hydrol. 2021, 600, 126470. [Google Scholar] [CrossRef]
- Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J.; Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J. Microplastics in urban and highway stormwater retention ponds. Sci. Total Environ. 2019, 671, 992–1000. [Google Scholar] [CrossRef]
- Yang, Y.; Ng, S.T.; Dao, J.; Zhou, S.; Xu, F.J.; Xu, X.; Zhou, Z.; Yang, Y.; Ng, S.T.; Dao, J.; et al. BIM-GIS-DCEs enabled vulnerability assessment of interdependent infrastructures—A case of stormwater drainage-building-road transport Nexus in urban flooding. Automat. Constr. 2021, 125, 103626. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Feng, W.; Huang, H.; Liu, Y.; Wang, H.; Feng, W.; Huang, H. Short Term Real-Time Rolling Forecast of Urban River Water Levels Based on LSTM: A Case Study in Fuzhou City, China. Int. J. Environ. Res. Public Health 2021, 18, 9287. [Google Scholar] [CrossRef]
- Qi, W.; Ma, C.; Xu, H.; Chen, Z.; Zhao, K.; Han, H.; Qi, W.; Ma, C.; Xu, H.; Chen, Z.; et al. A review on applications of urban flood models in flood mitigation strategies. Nat. Hazards 2021, 108, 31–62. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Y.; Chen, F.; Chen, Y. Urban climate research and planning applications in China: A scientometric and long-term review (1963–2018) based on CiteSpace. Clim. Res. 2020, 81, 91–112. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; Huang, B.; Xu, H.; Li, Y.; Li, R.; Zheng, H.; Huang, B.; Xu, H.; Li, Y. Dynamic Impacts of Climate and Land-Use Changes on Surface Runoff in the Mountainous Region of the Haihe River Basin, China. Adv. Meteorol. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, C.C.; Shen, X.; Zlatanova, S.; Xu, H.; Wang, C.C.; Shen, X.; Zlatanova, S. 3D Tree Reconstruction in Support of Urban Microclimate Simulation: A Comprehensive Literature Review. Buildings 2021, 11, 417. [Google Scholar] [CrossRef]
- Salata, S.; Salata, S. The Utilization of Supervised Classification Sampling for Environmental Monitoring in Turin (Italy). Sustainability 2021, 13, 2494. [Google Scholar] [CrossRef]
- Li, Y.; Jia, L.; Wu, W.; Yan, J.; Liu, Y.; Li, Y.; Jia, L.; Wu, W.; Yan, J.; Liu, Y. Urbanization for rural sustainability—Rethinking China’s urbanization strategy. J. Clean. Prod. 2018, 178, 580–586. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Tao, X.; Chen, M.; Liu, W.; Tao, X. Evolution and assessment on China’s urbanization 1960–2010: Under-urbanization or over-urbanization? Habitat Int. 2013, 38, 25–33. [Google Scholar] [CrossRef]
- Salata, S.; Ronchi, S.; Giaimo, C.; Arcidiacono, A.; Pantaloni, G.G.; Salata, S.; Ronchi, S.; Giaimo, C.; Arcidiacono, A.; Pantaloni, G.G. Performance-Based Planning to Reduce Flooding Vulnerability Insights from the Case of Turin (North-West Italy). Sustainability 2021, 13, 5697. [Google Scholar] [CrossRef]
- Nillesen, A.L.; Nillesen, A.L. Integrated design for flood risk and spatial quality—examples from the dutch delta programme. J. Green Build. 2018, 13, 157–184. [Google Scholar] [CrossRef]
- Wang, M.; Fang, Y.; Sweetapple, C.; Wang, M.; Fang, Y.; Sweetapple, C. Assessing flood resilience of urban drainage system based on a ‘do-nothing’ benchmark. J. Environ. Manag. 2021, 288, 112472. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Liu, C.; Li, J.; Hu, Y.; Liu, C. Exploring the Influence of an Urban Water System on Housing Prices: Case Study of Zhengzhou. Buildings 2020, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, C.; Li, Y.; Liu, C. A GIS-based procedure for measuring the efects of the built environment on urban flash floods. J. Green Build. 2016, 11, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xu, M.; Wang, Z.; Lai, C.; Zhang, M.; Xu, M.; Wang, Z.; Lai, C. Assessment of the vulnerability of road networks to urban waterlogging based on a coupled hydrodynamic model. J. Hydrol. 2021, 603, 127105. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A.; Ronchi, S.; Salata, S.; Arcidiacono, A. Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustain. Cities Soc. 2020, 63, 102459. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Breuste, J.; Hof, A.; Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Mohanty, M.P.; Mudgil, S.; Karmakar, S.; Mohanty, M.P.; Mudgil, S.; Karmakar, S. Flood management in India: A focussed review on the current status and future challenges. Int. J. Disaster Risk Reduct. 2020, 49, 101660. [Google Scholar] [CrossRef]
- Andenæs, E.; Time, B.; Muthanna, T.; Asphaug, S.; Kvande, T.; Andenæs, E.; Time, B.; Muthanna, T.; Asphaug, S.; Kvande, T. Risk Reduction Framework for Blue-Green Roofs. Buildings 2021, 11, 185. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, H.; Liu, J.; Yang, G.; Chen, X.; Yang, Z.; Huang, H.; Shao, W.; Zhang, H.; Liu, J.; et al. Data Integration and its Application in the Sponge City Construction of CHINA. Procedia Eng. 2016, 154, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Fesenmyer, K.A.; Wenger, S.J.; Leigh, D.S.; Neville, H.M.; Fesenmyer, K.A.; Wenger, S.J.; Leigh, D.S.; Neville, H.M. Large portion of USA streams lose protection with new interpretation of Clean Water Act. Freshw. Sci. 2021, 40, 252–258. [Google Scholar] [CrossRef]
- Karamouz, M.; Heydari, Z.; Karamouz, M.; Heydari, Z. Conceptual Design Framework for Coastal Flood Best Management Practices. J. Water Res. Plan. Man. 2020, 146, 4020041. [Google Scholar] [CrossRef]
- Gujer, W.; Krejci, V.; Schwarzenbach, R.; Zobrist, J.; Gujer, W.; Krejci, V.; Schwarzenbach, R.; Zobrist, J. Von der Kanalisation ins Grundwasser—Charakterisierung eines Regenereignisses im Glattal. Gas Wasserfach Wasser Abwasser 1982, 62, 298–311. [Google Scholar]
- Wang, J.; Guo, Y.; Wang, J.; Guo, Y. Dynamic water balance of infiltration-based stormwater best management practices. J. Hydrol. 2020, 589, 125174. [Google Scholar] [CrossRef]
- Baek, S.; Ligaray, M.; Pyo, J.; Park, J.; Kang, J.; Pachepsky, Y.; Chun, J.A.; Cho, K.H.; Baek, S.; Ligaray, M.; et al. A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. J. Hydrol. 2020, 586, 124886. [Google Scholar] [CrossRef]
- Ferrans, P.; Torres, M.N.; Temprano, J.; Rodríguez Sánchez, J.P.; Ferrans, P.; Torres, M.N.; Temprano, J.; Rodríguez Sánchez, J.P. Sustainable Urban Drainage System (SUDS) modeling supporting decision-making: A systematic quantitative review. Sci. Total Environ. 2022, 806, 150447. [Google Scholar] [CrossRef]
- Mouritz, M.J. Sustainable Urban Water Systems: Policy and Professional Praxis. Ph.D. Thesis, Murdoch University, Perth, Australia, 1996. [Google Scholar]
- Li, Z.; Xu, S.; Yao, L.; Li, Z.; Xu, S.; Yao, L. A Systematic Literature Mining of Sponge City: Trends, Foci and Challenges Standing Ahead. Sustainability 2018, 10, 1182. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Peng, C.; Chiang, P.; Cai, Y.; Wang, X.; Yang, Z.; Li, C.; Peng, C.; Chiang, P.; Cai, Y.; et al. Mechanisms and applications of green infrastructure practices for stormwater control: A review. J. Hydrol. 2019, 568, 626–637. [Google Scholar] [CrossRef]
- Raei, E.; Reza Alizadeh, M.; Reza Nikoo, M.; Adamowski, J.; Raei, E.; Reza Alizadeh, M.; Reza Nikoo, M.; Adamowski, J. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. J. Hydrol. 2019, 579, 124091. [Google Scholar] [CrossRef]
- Andenæs, E.; Engebø, A.; Time, B.; Lohne, J.; Torp, O.; Kvande, T.; Andenæs, E.; Engebø, A.; Time, B.; Lohne, J.; et al. Perspectives on Quality Risk in the Building Process of Blue-Green Roofs in Norway. Buildings 2020, 10, 189. [Google Scholar] [CrossRef]
- Ronchi, S.; Arcidiacono, A.; Pogliani, L.; Ronchi, S.; Arcidiacono, A.; Pogliani, L. Integrating green infrastructure into spatial planning regulations to improve the performance of urban ecosystems. Insights from an Italian case study. Sustain. Cities Soc. 2020, 53, 101907. [Google Scholar] [CrossRef]
- Xing, M.; Han, Y.; Jiang, M.; Li, H. The review of Sponge City. In Proceedings of the 2016 5th International Conference on Sustainable Energy and Environment Engineering (ICSEEE 2016), Zhuhai, China, 12–13 November 2016. [Google Scholar]
- Li, F.; Zhang, J.; Li, F.; Zhang, J. A review of the progress in Chinese Sponge City programme: Challenges and opportunities for urban stormwater management. Water Supply 2021, 1–14. [Google Scholar] [CrossRef]
- Falck, A.S.; Maggioni, V.; Tomasella, J.; Diniz, F.L.R.; Mei, Y.; Beneti, C.A.; Herdies, D.L.; Neundorf, R.; Caram, R.O.; Rodriguez, D.A.; et al. Improving the use of ground-based radar rainfall data for monitoring and predicting floods in the Iguaçu river basin. J. Hydrol. 2018, 567, 626–636. [Google Scholar] [CrossRef]
- Al Kalbani, K.; Rahman, A.A. 3D city model for monitoring flash flood risks in Salalah, Oman. Int. J. Eng. Geosci. 2021, 7, 17–23. [Google Scholar] [CrossRef]
- Dhaya, R.; Kanthavel, R.; Dhaya, R.; Kanthavel, R. Video Surveillance-Based Urban Flood Monitoring System Using a Convolutional Neural Network. Intell. Autom. Soft Comput. 2022, 32, 183–192. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, H.; Zhao, Z.; Zhang, H. A localization method for stagnant water in city road traffic image. Multimed. Tools Appl. 2021. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Xu, K.; Lian, J.; Long, Y.; Xu, H.; Ma, C.; Xu, K.; Lian, J.; Long, Y. Staged optimization of urban drainage systems considering climate change and hydrological model uncertainty. J. Hydrol. 2020, 587, 124959. [Google Scholar] [CrossRef]
- Xu, K.; Fang, J.; Fang, Y.; Sun, Q.; Wu, C.; Liu, M.; Xu, K.; Fang, J.; Fang, Y.; Sun, Q.; et al. The Importance of Digital Elevation Model Selection in Flood Simulation and a Proposed Method to Reduce DEM Errors: A Case Study in Shanghai. Int. J. Disaster Risk Sci. 2021. [Google Scholar] [CrossRef]
- Hu, C.; Xia, J.; She, D.; Song, Z.; Zhang, Y.; Hong, S.; Hu, C.; Xia, J.; She, D.; Song, Z.; et al. A new urban hydrological model considering various land covers for flood simulation. J. Hydrol. 2021, 603, 126833. [Google Scholar] [CrossRef]
- Liu, J.; Shao, W.; Xiang, C.; Mei, C.; Li, Z.; Liu, J.; Shao, W.; Xiang, C.; Mei, C.; Li, Z. Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces. Environ. Res. 2020, 182, 108929. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Lei, Y.; Gong, X.; Ju, W.; Qin, Y.; Lei, Y.; Gong, X.; Ju, W. A model involving meteorological factors for short- to medium-term, water-level predictions of small- and medium-sized urban rivers. Nat. Hazards 2021. [Google Scholar] [CrossRef]
- Goldshleger, N.; Maor, A.; Garzuzi, J.; Asaf, L.; Goldshleger, N.; Maor, A.; Garzuzi, J.; Asaf, L. Influence of land use on the quality of runoff along Israel′s coastal strip (demonstrated in the cities of Herzliya and Ra′anana). Hydrol. Process. 2015, 29, 1289–1300. [Google Scholar] [CrossRef]
- Cui, Y.; Liang, Q.; Wang, G.; Zhao, J.; Hu, J.; Wang, Y.; Xia, X.; Cui, Y.; Liang, Q.; Wang, G.; et al. Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling. Water 2019, 11, 2139. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kinsland, G.; Poudel, D.; Fenech, A.; Wang, X.; Kinsland, G.; Poudel, D.; Fenech, A. Urban flood prediction under heavy precipitation. J. Hydrol. 2019, 577, 123984. [Google Scholar] [CrossRef]
- May, D.B.; Sivakumar, M.; May, D.B.; Sivakumar, M. Prediction of urban stormwater quality using artificial neural networks. Environ. Modell. Softw. 2009, 24, 296–302. [Google Scholar] [CrossRef]
- Berkhahn, S.; Fuchs, L.; Neuweiler, I.; Berkhahn, S.; Fuchs, L.; Neuweiler, I. An ensemble neural network model for real-time prediction of urban floods. J. Hydrol. 2019, 575, 743–754. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, Y.; Wang, H.; Jiang, Z.; Wu, Z.; Zhou, Y.; Wang, H.; Jiang, Z. Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Sci. Total Environ. 2020, 716, 137077. [Google Scholar] [CrossRef] [PubMed]
- Timbadiya, P.V.; Patel, P.L.; Porey, P.D.; Timbadiya, P.V.; Patel, P.L.; Porey, P.D. A 1D–2D Coupled Hydrodynamic Model for River Flood Prediction in a Coastal Urban Floodplain. J. Hydrol. Eng. 2015, 20, 5014017. [Google Scholar] [CrossRef]
- Yang, P.; Ng, T.L.; Yang, P.; Ng, T.L. Gauging Through the Crowd: A Crowd-Sourcing Approach to Urban Rainfall Measurement and Storm Water Modeling Implications. Water Resour. Res. 2017, 53, 9462–9478. [Google Scholar] [CrossRef]
- Su, B.; Huang, H.; Li, Y.; Su, B.; Huang, H.; Li, Y. Integrated simulation method for waterlogging and traffic congestion under urban rainstorms. Nat. Hazards 2016, 81, 23–40. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, J.; Jiang, X.; Liu, X.; Bao, Y.; Sun, Y.; Chen, P.; Zhang, J.; Jiang, X.; Liu, X.; et al. Scenario Simulation-Based Assessment of Trip Difficulty for Urban Residents under Rainstorm Waterlogging. Int. J. Environ. Res. Public Health 2012, 9, 2057–2074. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Li, J.; Li, Y.; Xia, J.; Gao, X.; Han, R.; Li, J.; Li, Y.; Xia, J.; Gao, X. Comprehensive benefits of different application scales of sponge facilities in urban built areas of northwest China. Ecohydrol. Hydrobiol. 2021, 21, 516–528. [Google Scholar] [CrossRef]
- Fan, G.; Lin, R.; Wei, Z.; Xiao, Y.; Shangguan, H.; Song, Y.; Fan, G.; Lin, R.; Wei, Z.; Xiao, Y.; et al. Effects of low impact development on the stormwater runoff and pollution control. Sci. Total Environ. 2022, 805, 150404. [Google Scholar] [CrossRef]
- Peng, Z.; Jinyan, K.; Wenbin, P.; Xin, Z.; Yuanbin, C.; Peng, Z.; Jinyan, K.; Wenbin, P.; Xin, Z.; Yuanbin, C. Effects of Low-Impact Development on UrbanRainfall Runoff under Different Rainfall Characteristics. Pol. J. Environ. Stud. 2019, 28, 771–783. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Bellos, V.; Kopsiaftis, G.; Psiloglou, B.; Tsihrintzis, V.A.; Kourtis, I.M.; Bellos, V.; Kopsiaftis, G.; Psiloglou, B.; Tsihrintzis, V.A. Methodology for holistic assessment of grey-green flood mitigation measures for climate change adaptation in urban basins. J. Hydrol. 2021, 603, 126885. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Zhang, D.; Zheng, Y.; Li, S.; Tan, S.K.; Wang, M.; Zhang, Y.; Zhang, D.; Zheng, Y.; et al. Life-cycle cost analysis and resilience consideration for coupled grey infrastructure and low-impact development practices. Sustain. Cities Soc. 2021, 75, 103358. [Google Scholar] [CrossRef]
- Meilvang, M.L.; Meilvang, M.L. From rain as risk to rain as resource: Professional and organizational changes in urban rainwater management. Curr. Sociol. 2021, 69, 1034–1050. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, M.; Chen, G.; Xu, Y.; Zhang, X.; Hu, M.; Chen, G.; Xu, Y. Urban Rainwater Utilization and its Role in Mitigating Urban Waterlogging Problems—A Case Study in Nanjing, China. Water Resour. Manag. 2012, 26, 3757–3766. [Google Scholar] [CrossRef]
- Lü, Y.P.; Yang, K.; Che, Y.; Shang, Z.Y.; Zhu, H.F.; Jian, Y.; Lü, Y.P.; Yang, K.; Che, Y.; Shang, Z.Y.; et al. Cost-effectiveness-based multi-criteria optimization for sustainable rainwater utilization: A case study in Shanghai. Urban Water J. 2013, 10, 127–143. [Google Scholar] [CrossRef]
- Chang, M.; Tseng, Y.; Chen, J.; Chang, M.; Tseng, Y.; Chen, J. A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Trans. Res. Part E Logist. Trans. Rev. 2007, 43, 737–754. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, Y.; Liu, X.; Wang, J.; Yang, Q.; Sun, Y.; Liu, X.; Wang, J. MAS-Based Evacuation Simulation of an Urban Community during an Urban Rainstorm Disaster in China. Sustainability 2020, 12, 546. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Huang, G.Q.; Fang, J.; Chen, J.; Xu, G.; Huang, G.Q.; Fang, J.; Chen, J. Cloud-based smart asset management for urban flood control. Enterp. Inf. Syst. 2015, 11, 719–737. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, J.; Sun, Y.; Chen, P.; Zhang, J.; Sun, Y. Research on Emergency Rescue of Urban Flood Disaster Based on Wargame Simulation. J. Indian Soc. Remote 2018, 46, 1677–1687. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wen, J.; Xi, J.; Xu, H.; Shan, X.; Yao, Q.; Shi, Y.; Wen, J.; Xi, J.; Xu, H.; et al. A Study on Spatial Accessibility of the Urban Tourism Attraction Emergency Response under the Flood Disaster Scenario. Complexity 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Lin, A.; Wu, H.; Liang, G.; Cardenas-Tristan, A.; Wu, X.; Zhao, C.; Li, D.; Lin, A.; Wu, H.; Liang, G.; et al. A big data-driven dynamic estimation model of relief supplies demand in urban flood disaster. Int. J. Disaster Risk Reduct. 2020, 49, 101682. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P.; Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Si, H.; Shi, J.; Wu, G.; Chen, J.; Zhao, X.; Si, H.; Shi, J.; Wu, G.; Chen, J.; Zhao, X. Mapping the bike sharing research published from 2010 to 2018: A scientometric review. J. Clean. Prod. 2019, 213, 415–427. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K.; Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in global research in forest carbon sequestration: A bibliometric analysis. J. Clean. Prod. 2020, 252, 119908. [Google Scholar] [CrossRef]
- Ulucak, R.; Sari, R.; Erdogan, S.; Alexandre Castanho, R.; Ulucak, R.; Sari, R.; Erdogan, S.; Alexandre Castanho, R. Bibliometric Literature Analysis of a Multi-Dimensional Sustainable Development Issue: Energy Poverty. Sustainability 2021, 13, 9780. [Google Scholar] [CrossRef]
- Phoa, F.K.H.; Lai, H.; Chang, L.L.; Honda, K.; Phoa, F.K.H.; Lai, H.; Chang, L.L.; Honda, K. A two-step deep learning approach to data classification and modeling and a demonstration on subject type relationship analysis in the Web of Science. Scientometrics 2020, 125, 851–863. [Google Scholar] [CrossRef]
- Schappert, M.; von Hauff, M.; Schappert, M.; von Hauff, M. Sustainable consumption in the smart grid: From key points to eco-routine. J. Clean. Prod. 2020, 267, 121585. [Google Scholar] [CrossRef]
- Jamali, B.; Bach, P.M.; Deletic, A.; Jamali, B.; Bach, P.M.; Deletic, A. Rainwater harvesting for urban flood management—An integrated modelling framework. Water Res. 2020, 171, 115372. [Google Scholar] [CrossRef]
- Lintern, A.; Leahy, P.; Deletic, A.; Heijnis, H.; Zawadzki, A.; Gadd, P.; McCarthy, D.; Lintern, A.; Leahy, P.; Deletic, A.; et al. Uncertainties in historical pollution data from sedimentary records from an Australian urban floodplain lake. J. Hydrol. 2018, 560, 560–571. [Google Scholar] [CrossRef]
- Coleman, D.C.; Whitman, W.B.; Coleman, D.C.; Whitman, W.B. Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 2005, 49, 479–497. [Google Scholar] [CrossRef] [Green Version]
- Ganasegeran, K.; Hor, C.P.; Jamil, M.F.A.; Suppiah, P.D.; Noor, J.M.; Hamid, N.A.; Chuan, D.R.; Manaf, M.R.A.; Ch Ng, A.S.H.; Looi, I.; et al. Mapping the Scientific Landscape of Diabetes Research in Malaysia (2000–2018): A Systematic Scientometrics Study. Int. J. Environ. Res. Public Health 2021, 18, 318. [Google Scholar] [CrossRef]
- Zheng, C.; Yuan, J.; Zhu, L.; Zhang, Y.; Shao, Q.; Zheng, C.; Yuan, J.; Zhu, L.; Zhang, Y.; Shao, Q. From digital to sustainable: A scientometric review of smart city literature between 1990 and 2019. J. Clean. Prod. 2020, 258, 120689. [Google Scholar] [CrossRef]
- Miyashita, S.; Sengoku, S.; Miyashita, S.; Sengoku, S. Scientometrics for management of science: Collaboration and knowledge structures and complexities in an interdisciplinary research project. Scientometrics 2021, 126, 7419–7444. [Google Scholar] [CrossRef]
- Blümel, C.; Schniedermann, A.; Blümel, C.; Schniedermann, A. Studying review articles in scientometrics and beyond: A research agenda. Scientometrics 2020, 124, 711–728. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Meng, G.; Yang, Y.; Meng, G. A bibliometric analysis of comparative research on the evolution of international and Chinese ecological footprint research hotspots and frontiers since 2000. Ecol. Indic. 2019, 102, 650–665. [Google Scholar] [CrossRef]
- Oguntona, O.A.; Aigbavboa, C.O.; Thwala, W.D. A scientometric analysis and visualization of green building research in Africa. J. Green Build. 2021, 16, 83–86. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, D.; Pang, R.; Xie, F.; Zhang, J.; Sun, D.; Wang, Z.; Ma, D.; Pang, R.; Xie, F.; et al. Research Progress and Development Trend of Social Media Big Data (SMBD): Knowledge Mapping Analysis Based on CiteSpace. ISPRS Int. J. Geo-Inf. 2020, 9, 632. [Google Scholar] [CrossRef]
- Liu, G.; Tan, Y.; Huang, Z.; Liu, G.; Tan, Y.; Huang, Z. Knowledge Mapping of Homeowners’ Retrofit Behaviors: An Integrative Exploration. Buildings 2021, 11, 273. [Google Scholar] [CrossRef]
- Huang, Y.; Glänzel, W.; Zhang, L.; Huang, Y.; Glänzel, W.; Zhang, L. Tracing the development of mapping knowledge domains. Scientometrics 2021, 126, 6201–6224. [Google Scholar] [CrossRef]
- Barragán Martín, A.B.; Molero Jurado, M.D.M.; Pérez-Fuentes, M.D.C.; Simón Márquez, M.D.M.; Martos Martínez, Á.; Sisto, M.; Gázquez Linares, J.J.; Barragán Martín, A.B.; Molero Jurado, M.D.M.; Pérez-Fuentes, M.D.C.; et al. Study of Cyberbullying among Adolescents in Recent Years: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3016. [Google Scholar] [CrossRef]
- López-Robles, J.R.; Cobo, M.J.; Gutiérrez-Salcedo, M.; Martínez-Sánchez, M.A.; Gamboa-Rosales, N.K.; Herrera-Viedma, E.; López-Robles, J.R.; Cobo, M.J.; Gutiérrez-Salcedo, M.; Martínez-Sánchez, M.A.; et al. 30th Anniversary of Applied Intelligence: A combination of bibliometrics and thematic analysis using SciMAT. Appl. Intell. 2021, 51, 6547–6568. [Google Scholar] [CrossRef]
- Dai, S.; Duan, X.; Zhang, W.; Dai, S.; Duan, X.; Zhang, W. Knowledge map of environmental crisis management based on keywords network and co-word analysis, 2005–2018. J. Clean. Prod. 2020, 262, 121168. [Google Scholar] [CrossRef]
- Chen, C.; Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.; Han, D.; Song, X. Past, present, and future of global seawater intrusion research: A bibliometric analysis. J. Hydrol. 2021, 603, 126844. [Google Scholar] [CrossRef]
- Wambeke, B.W.; Liu, M.; Hsiang, S.M.; Wambeke, B.W.; Liu, M.; Hsiang, S.M. Using Pajek and Centrality Analysis to Identify a Social Network of Construction Trades. J. Constr. Eng. Manag. 2012, 138, 1192–1201. [Google Scholar] [CrossRef]
- Xue, W.; Li, H.; Ali, R.; Rehman, R.U.; Xue, W.; Li, H.; Ali, R.; Rehman, R.U. Knowledge Mapping of Corporate Financial Performance Research: A Visual Analysis Using Cite Space and Ucinet. Sustainability 2020, 12, 3554. [Google Scholar] [CrossRef]
- Orduña-Malea, E.; Costas, R.; Orduña-Malea, E.; Costas, R. Link-based approach to study scientific software usage: The case of VOSviewer. Scientometrics 2021, 126, 8153–8186. [Google Scholar] [CrossRef]
- Sood, S.K.; Kumar, N.; Saini, M.; Sood, S.K.; Kumar, N.; Saini, M. Scientometric analysis of literature on distributed vehicular networks: VOSViewer visualization techniques. Artif. Intell. Rev. 2021. [Google Scholar] [CrossRef]
- Çevikbaş, M.; Işık, Z.; Çevikbaş, M.; Işık, Z. An Overarching Review on Delay Analyses in Construction Projects. Buildings 2021, 11, 109. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T.; Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019. ahead-of-print. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q.; Osei-Kyei, R.; Wuni, I.Y.; Shen, G.Q.; Osei-Kyei, R. sustainability of off-site construction: A bibliometric review and visualized analysis of trending topics and themes. J. Green Build. 2020, 15, 131–154. [Google Scholar] [CrossRef]
- Tsolakis, N.; Anthopoulos, L.; Tsolakis, N.; Anthopoulos, L. Eco-cities: An integrated system dynamics framework and a concise research taxonomy. Sustain. Cities Soc. 2015, 17, 1–14. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.; Wang, H.; Wang, Y.; Zhang, Z.; Azam, A.; Ahmed, A.; Wang, H.; Wang, Y.; Zhang, Z. Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis. J. Clean. Prod. 2021, 295, 126496. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Chen, X.; Liu, Y. Visualization analysis of high-speed railway research based on CiteSpace. Transp. Policy 2020, 85, 1–17. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, J.; Fu, C.; Zhang, X.; Wang, X.; Zhang, Y.; Zhang, J.; Fu, C.; Zhang, X. Progress in urban metabolism research and hotspot analysis based on CiteSpace analysis. J. Clean. Prod. 2021, 281, 125224. [Google Scholar] [CrossRef]
- Qin, F.; Zhu, Y.; Ao, T.; Chen, T.; Qin, F.; Zhu, Y.; Ao, T.; Chen, T. The Development Trend and Research Frontiers of Distributed Hydrological Models—Visual Bibliometric Analysis Based on Citespace. Water 2021, 13, 174. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J.; Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Chen, H.; Chen, J.; Chen, X.; Zhang, N.; Chen, H.; Chen, J.; Chen, X. Social Media Meets Big Urban Data: A Case Study of Urban Waterlogging Analysis. Comput. Intell. Neurosci. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bu, Y.; Wang, B.; Chinchilla-Rodríguez, Z.; Sugimoto, C.R.; Huang, Y.; Huang, W.; Bu, Y.; Wang, B.; Chinchilla-Rodríguez, Z.; Sugimoto, C.R.; et al. Considering author sequence in all-author co-citation analysis. Inform. Process. Manag. 2020, 57, 102300. [Google Scholar] [CrossRef]
- Torres-Pruñonosa, J.; Plaza-Navas, M.A.; Díez-Martín, F.; Prado-Roman, C.; Torres-Pruñonosa, J.; Plaza-Navas, M.A.; Díez-Martín, F.; Prado-Roman, C. The Sources of Knowledge of the Economic and Social Value in Sport Industry Research: A Co-citation Analysis. Front. Psychol. 2020, 11, 3924. [Google Scholar] [CrossRef]
- First systematic review on PM-bound water: Exploring the existing knowledge domain using the CiteSpace software. Scientometrics 2020, 124, 1945–2008. [CrossRef]
- Balica, S.F.; Wright, N.G.; van der Meulen, F.; Balica, S.F.; Wright, N.G.; van der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.D.; Andrieu, H.; Hamel, P.; Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M.; Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2013, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.; Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; et al. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv. Water Resour. 2009, 32, 1255–1266. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J.; Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Kaegi, R.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Mueller, E.; Vonbank, R.; Boller, M.; Burkhardt, M.; Kaegi, R.; Sinnet, B.; et al. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 2010, 158, 2900–2905. [Google Scholar] [CrossRef]
- Brown, J.N.; Peake, B.M.; Brown, J.N.; Peake, B.M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Sci. Total Environ. 2006, 359, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Wang, Y.; Fath, B.D.; Zhang, X.; Zhang, Y.; Wang, Y.; Fath, B.D. Research progress and hotspot analysis for reactive nitrogen flows in macroscopic systems based on a CiteSpace analysis. Ecol. Model. 2021, 443, 109456. [Google Scholar] [CrossRef]
- Hu, M.; Hu, M. A review of life cycle research of the built environment at difference scales: A citation analysis using big data. J. Green Build. 2019, 14, 63–80. [Google Scholar] [CrossRef]
- Brunetta, G.; Salata, S.; Brunetta, G.; Salata, S. Mapping Urban Resilience for Spatial Planning—A First Attempt to Measure the Vulnerability of the System. Sustainability 2019, 11, 2331. [Google Scholar] [CrossRef] [Green Version]
- Ronchi, S.; Arcidiacono, A.; Ronchi, S.; Arcidiacono, A. Adopting an Ecosystem Services-Based Approach for Flood Resilient Strategies: The Case of Rocinha Favela (Brazil). Sustainability 2019, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Alexander, K.; Hettiarachchi, S.; Ou, Y.; Sharma, A.; Alexander, K.; Hettiarachchi, S.; Ou, Y.; Sharma, A. Can integrated green spaces and storage facilities absorb the increased risk of flooding due to climate change in developed urban environments? J. Hydrol. 2019, 579, 124201. [Google Scholar] [CrossRef]
- Kaspersen, P.S.; Ravn, N.H.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M.; Kaspersen, P.S.; Ravn, N.H.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M. Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding. Hydrol. Earth Syst. Soc. 2017, 21, 4131–4147. [Google Scholar] [CrossRef] [Green Version]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Asaduzzaman, M.; Dewan, A.; Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Wong, A.K.F.; Köseoglu, M.A.; Kim, S.S.; Wong, A.K.F.; Köseoglu, M.A.; Kim, S.S. The intellectual structure of corporate social responsibility research in tourism and hospitality: A citation/co-citation analysis. J. Hosp. Tour. Manag. 2021, 49, 270–284. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O.; Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2013, 12, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E.; Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S.; Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; et al. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Modell. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T.; Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Palla, A.; Gnecco, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- Qin, H.; Li, Z.; Fu, G.; Qin, H.; Li, Z.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I.; Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Neelz, S.; Pender, G.; Villanueva, I.; Wright, N.G.; Liang, D.; Falconer, R.A.; Lin, B.; Waller, S.; et al. Benchmarking 2D hydraulic models for urban flooding. Proc. Inst. Civil Eng.—Water Manag. 2008, 161, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Long, R.; Bai, Y.; Chen, H.; Wu, M.; Long, R.; Bai, Y.; Chen, H. Knowledge mapping analysis of international research on environmental communication using bibliometrics. J. Environ. Manag. 2021, 298, 113475. [Google Scholar] [CrossRef] [PubMed]
- Malczewski, J.; Jankowski, P.; Malczewski, J.; Jankowski, P. Emerging trends and research frontiers in spatial multicriteria analysis. Int. J. Geogr. Inf. Sci. 2020, 34, 1257–1282. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.; Wang, S.; Qian, S.; Zhang, X.; Song, Y.; Wang, S.; Qian, S. Exploring Research Trends and Building a Multidisciplinary Framework Related to Brownfield: A Visual Analysis Using CiteSpace. Complexity 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X.; Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; et al. Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace. J. Clean. Prod. 2020, 264, 121537. [Google Scholar] [CrossRef]
- He, C.; Hou, Y.; Ding, L.; Li, P.; He, C.; Hou, Y.; Ding, L.; Li, P. Visualized literature review on sustainable building renovation. J. Build. Eng. 2021, 44, 102622. [Google Scholar] [CrossRef]
Year | Total Cited Number | Annual Average | DOI |
---|---|---|---|
2013 | 817 | 90.78 | 10.1038/NCLIMATE1979 |
2006 | 446 | 27.88 | 10.1016/j.landurbplan.2005.02.010 |
2014 | 415 | 51.88 | 10.1080/02626667.2013.857411 |
2013 | 363 | 40.33 | 10.1016/j.advwatres.2012.09.001 |
2010 | 346 | 28.83 | 10.1016/j.envpol.2010.06.009 |
2008 | 315 | 22.50 | 10.1007/s00267-008-9119-1 |
2007 | 294 | 19.60 | 10.1016/j.tre.2006.10.013 |
2012 | 261 | 26.10 | 10.1007/s11069-012-0234-1 |
2006 | 253 | 15.81 | 10.1016/j.scitotenv.2005.05.016 |
2009 | 242 | 18.62 | 10.1016/j.advwatres.2009.05.003 |
Keyword | Occurrences | Total Link Strength | Keyword | Occurrences | Total Link Strength |
---|---|---|---|---|---|
urban flood | 541 | 2124 | performance | 209 | 1351 |
urban stormwater | 469 | 2459 | quality | 200 | 1156 |
runoff | 424 | 2477 | systems | 192 | 1085 |
climate change | 386 | 2059 | risk | 181 | 846 |
model | 375 | 1726 | heavy metal | 177 | 966 |
impact | 274 | 1983 | urban | 164 | 776 |
management | 351 | 1917 | simulation | 164 | 829 |
urbanization | 271 | 1573 | low impact development | 150 | 986 |
water | 263 | 1361 | rainfall | 149 | 701 |
urban stormwater management | 225 | 1236 | precipitation | 139 | 559 |
Author | Year | Frequency | Centrality | DOI |
---|---|---|---|---|
Fletcher T.D. | 2015 | 88 | 0.06 | 10.1080/1573062X.2014.916314 |
Hammond M.J. | 2015 | 56 | 0.03 | 10.1080/1573062X.2013.857421 |
Burns M.J. | 2012 | 39 | 0.01 | 10.1016/J.LANDURBPLAN.2011.12.012 |
Teng J. | 2017 | 36 | 0.02 | 10.1016/J.ENVSOFT.2017.01.006 |
Eckart K. | 2017 | 35 | 0.05 | 10.1016/J.SCITOTENV.2017.06.254 |
Palla A. | 2015 | 34 | 0.02 | 10.1016/J.JHYDROL.2015.06.050 |
Qin H.P. | 2013 | 34 | 0.01 | 10.1016/J.JENVMAN.2013.08.026 |
Fletcher T.D. | 2013 | 33 | 0.08 | 10.1016/J.ADVWATRES.2012.09.001 |
Ahiablame L.M. | 2012 | 33 | 0.01 | 10.1007/S11270-012-1189-2 |
Chen Y.B. | 2015 | 31 | 0 | 10.1016/J.ENVRES.2015.02.028 |
Mei C. | 2018 | 30 | 0.01 | 10.1016/J.SCITOTENV.2018.05.199 |
Jiang Y. | 2018 | 30 | 0 | 10.1016/J.ENVSCI.2017.11.016 |
Xia J. | 2017 | 30 | 0 | 10.1007/S11430-016-0111-8 |
Yin J. | 2016 | 29 | 0.03 | 10.1016/J.JHYDROL.2016.03.037 |
Hunter N.M. | 2008 | 29 | 0.02 | 10.1680/WAMA.2008.161.1.13 |
2006–2010 | Frequency | 2011–2015 | Frequency | 2016–2021 | Frequency |
---|---|---|---|---|---|
urban stormwater | 79 | urban stormwater | 146 | urban flood | 350 |
runoff | 68 | runoff | 113 | climate change | 324 |
sediment | 38 | urban flood | 111 | model | 316 |
model | 35 | water | 90 | impact | 303 |
urban flood | 33 | management | 89 | urban stormwater | 274 |
water | 31 | model | 82 | management | 253 |
quality | 30 | climate change | 80 | runoff | 252 |
heavy metal | 28 | system | 71 | urbanization | 221 |
water quality | 27 | impact | 63 | system | 203 |
system | 26 | water quality | 60 | risk | 165 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zheng, X.; Jin, L.; Lei, X.; Shao, B.; Chen, Y. Research Progress of Urban Floods under Climate Change and Urbanization: A Scientometric Analysis. Buildings 2021, 11, 628. https://doi.org/10.3390/buildings11120628
Yang Q, Zheng X, Jin L, Lei X, Shao B, Chen Y. Research Progress of Urban Floods under Climate Change and Urbanization: A Scientometric Analysis. Buildings. 2021; 11(12):628. https://doi.org/10.3390/buildings11120628
Chicago/Turabian StyleYang, Qiu, Xiazhong Zheng, Lianghai Jin, Xiaohui Lei, Bo Shao, and Yun Chen. 2021. "Research Progress of Urban Floods under Climate Change and Urbanization: A Scientometric Analysis" Buildings 11, no. 12: 628. https://doi.org/10.3390/buildings11120628
APA StyleYang, Q., Zheng, X., Jin, L., Lei, X., Shao, B., & Chen, Y. (2021). Research Progress of Urban Floods under Climate Change and Urbanization: A Scientometric Analysis. Buildings, 11(12), 628. https://doi.org/10.3390/buildings11120628