Optimization and Validation of Sound Absorption Performance of 10-Layer Gradient Compressed Porous Metal
Abstract
1. Introduction
2. Theoretical Modeling
3. Parameter Optimization
4. Finite Element Simulation
5. Standing Wave Tube Measurement
6. Structural Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buxton, R.T.; McKenna, M.F.; Mennitt, D.; Fristrup, K.; Crooks, K.; Angeloni, L.; Wittemyer, G. Noise pollution is pervasive in U.S. protected areas. Science 2017, 356, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijsen, M.J. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat. Rev. Cardiol. 2018, 15, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzis, K.; Vanhonacker, P. Noise reduction in urban LRT networks by combining track based solutions. Sci. Total Environ. 2016, 568, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Sheng, P. Sound Absorption Structures: From Porous Media to Acoustic Metamaterials. Annu. Rev. Mater. Res. 2017, 47, 83–114. [Google Scholar] [CrossRef]
- Liu, P.S.; Qing, H.B.; Hou, H.L. Primary investigation on sound absorption performance of highly porous titanium foams. Mater. Des. 2015, 85, 275–281. [Google Scholar] [CrossRef]
- Wang, J.Z.; Ao, Q.B.; Ma, J.; Kang, X.T.; Wu, C.; Tang, H.P.; Song, W.D. Sound absorption performance of porous metal fiber materials with different structures. Appl. Acoust. 2019, 145, 431–438. [Google Scholar] [CrossRef]
- Jin, W.; Liu, J.A.; Wang, Z.L.; Wang, Y.H.; Cao, Z.; Liu, Y.H.; Zhu, X.Y. Sound absorption characteristics of aluminum foams treated by plasma electrolytic oxidation. Materials 2015, 8, 7511–7518. [Google Scholar] [CrossRef]
- Ru, J.M.; Bo, K.; Liu, Y.G.; Wang, X.L.; Fan, T.X.; Zhang, D. Microstructure and sound absorption of porous copper prepared by resin curing and foaming method. Mater. Lett. 2015, 139, 318–321. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhan, J.X.; Fard, M.; Davy, J.L. Acoustic properties of a porous polycarbonate material produced by additive manufacturing. Mater. Lett. 2016, 181, 296–299. [Google Scholar] [CrossRef]
- Ning, J.F.; Zhao, G.P. Sound absorption characteristics of multilayer porous metal materials backed with an air gap. J. Vib. Control 2016, 22, 2861–2872. [Google Scholar]
- Otaru, A.J. Enhancing the sound absorption performance of porous metals using tomography images. Appl. Acoust. 2019, 143, 183–189. [Google Scholar] [CrossRef]
- Chen, W.J.; Liu, S.T.; Tong, L.Y.; Li, S. Design of multi-layered porous fibrous metals for optimal sound absorption in the low frequency range. Theor. Appl. Mech. Lett. 2016, 6, 42–48. [Google Scholar] [CrossRef]
- Cheng, W.; Duan, C.Y.; Liu, P.S.; Lu, M. Sound absorption performance of various nickel foam-base multi-layer structures in range of low frequency. Trans. Nonferr. Metal. Soc. 2017, 27, 1989–1995. [Google Scholar] [CrossRef]
- Ao, Q.B.; Wang, J.Z.; Tang, H.P.; Zhi, H.; Ma, J.; Bao, T.F. Sound absorption characteristics and structure optimization of porous metal fibrous materials. Rare Metal Mat. Eng. 2015, 44, 2646–2650. [Google Scholar]
- Bai, P.F.; Shen, X.M.; Zhang, X.N.; Yang, X.C.; Yin, Q.; Liu, A.X. Influences of compression ratio on sound absorption performance of porous nickel-iron alloy. Metals 2018, 8, 539. [Google Scholar] [CrossRef]
- Bai, P.F.; Yang, X.C.; Shen, X.M.; Zhang, X.N.; Li, Z.Z.; Yin, Q.; Jiang, G.L.; Yang, F. Sound absorption performance of the acoustic absorber fabricated by compression and microperforation of the porous metal. Mater. Des. 2019, 167, 107637. [Google Scholar] [CrossRef]
- Yang, X.C.; Shen, X.M.; Bai, P.F.; He, X.H.; Zhang, X.N.; Li, Z.Z.; Chen, L.; Yin, Q. Preparation and characterization of gradient compressed porous metal for high-efficiency and thin-thickness acoustic absorber. Materials 2019, 12, 1413. [Google Scholar] [CrossRef]
- Verdière, K.; Panneton, R.; Elkoun, S.; Dupont, T.; Leclaire, P. Transfer matrix method applied to the parallel assembly of sound absorbing materials. J. Acoust. Soc. Am. 2013, 134, 4648–4658. [Google Scholar] [CrossRef]
- Shen, X.M.; Bai, P.F.; Yang, X.C.; Zhang, X.N.; To, S. Low-frequency sound absorption by optimal combination structure of porous metal and microperforated panel. Appl. Sci. 2019, 9, 1507. [Google Scholar] [CrossRef]
- Kino, N. Further investigations of empirical improvements to the Johnson–Champoux–Allard model. Appl. Acoust. 2015, 96, 153–170. [Google Scholar] [CrossRef]
- Yang, X.C.; Peng, K.; Shen, X.M.; Zhang, X.N.; Bai, P.F.; Xu, P.J. Geometrical and dimensional optimization of sound absorbing porous copper with cavity. Mater. Des. 2017, 131, 297–306. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Engineering Optimisation by Cuckoo Search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search: recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef]
- Yang, X.C.; Bai, P.F.; Shen, X.M.; To, S.; Chen, L.; Zhang, X.N.; Yin, Q. Optimal design and experimental validation of sound absorbing multilayer microperforated panel with constraint conditions. Appl. Acoust. 2019, 146, 334–344. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.T.; Zhang, Y.H.; Wen, G.L.; Qing, Q.X.; Wang, H.X.; Sedaghati, R.; Xie, Y.M. On sound insulation of pyramidal lattice sandwich structure. Compos. Struct. 2019, 208, 385–394. [Google Scholar] [CrossRef]
- Bujoreanu, C.; Nedeff, F.; Benchea, M.; Agop, M. Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Appl. Acoust. 2017, 119, 88–93. [Google Scholar] [CrossRef]
- Yang, X.C.; Bai, P.F.; Shen, X.M.; Zhang, X.N.; Zhu, J.W.; Yin, Q.; Peng, K. Theoretical modeling and experimental validation of sound absorbing coefficient of porous iron. J. Porous Media 2019, 22, 225–241. [Google Scholar] [CrossRef]
- Delany, M.E.; Bazley, E.N. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 1970, 3, 105–116. [Google Scholar] [CrossRef]
- Miki, Y. Acoustical properties of porous materials-Modifications of Delany-Bazley models. J. Acoust. Soc. Jpn. (E) 1990, 11, 19–24. [Google Scholar] [CrossRef]
Layer Sequences | Investigated Frequency Ranges | |||
---|---|---|---|---|
100–1000 Hz | 100–2000 Hz | 100–4000 Hz | 100–6000 Hz | |
1st layer | 7.11% | 37.17% | 85.03% | 32.16% |
2nd layer | 90.00% | 90.00% | 32.65% | 74.59% |
3rd layer | 90.00% | 46.36% | 28.15% | 32.52% |
4th layer | 78.15% | 42.65% | 32.74% | 35.33% |
5th layer | 43.31% | 45.28% | 42.15% | 45.27% |
6th layer | 43.83% | 50.51% | 53.95% | 56.51% |
7th layer | 47.02% | 57.32% | 66.56% | 70.10% |
8th layer | 51.91% | 65.54% | 78.76% | 79.40% |
9th layer | 58.67% | 75.17% | 90.00% | 84.13% |
10th layer | 90.00% | 90.00% | 90.00% | 90.00% |
Investigated Frequency Range | Type of Material | Average Sound Absorption Coefficient | ||
---|---|---|---|---|
In Actual | In Theory | In Simulation | ||
100–1000 Hz | Original porous metal | 0.1529 | 0.1639 | 0.1179 |
Uniform compressed porous metal | 0.2098 | 0.2593 | 0.2292 | |
Gradient compressed porous metal | 0.3325 | 0.3805 | 0.3804 | |
100–2000 Hz | Original porous metal | 0.2477 | 0.3070 | 0.2540 |
Uniform compressed porous metal | 0.4531 | 0.5015 | 0.4664 | |
Gradient compressed porous metal | 0.5412 | 0.5678 | 0.5645 | |
100–4000 Hz | Original porous metal | 0.4233 | 0.4981 | 0.4917 |
Uniform compressed porous metal | 0.6831 | 0.7168 | 0.6793 | |
Gradient compressed porous metal | 0.7461 | 0.7503 | 0.7244 | |
100–6000 Hz | Original porous metal | 0.5280 | 0.6050 | 0.6227 |
Uniform compressed porous metal | 0.7391 | 0.7980 | 0.7597 | |
Gradient compressed porous metal | 0.7617 | 0.8231 | 0.7870 |
Parameters | Frequency Range (Hz) | 1st Layer | 2nd Layer | 3rd Layer | 4th Layer | 5th Layer | 6th Layer | 7th Layer | 8th Layer | 9th Layer | 10th Layer |
---|---|---|---|---|---|---|---|---|---|---|---|
Thickness (mm) | 100–1000 | 4.645 | 0.500 | 0.500 | 1.093 | 2.835 | 2.809 | 2.649 | 2.404 | 2.066 | 0.500 |
100–2000 | 3.141 | 0.500 | 2.682 | 2.868 | 2.736 | 2.475 | 2.134 | 1.723 | 1.242 | 0.500 | |
100–4000 | 0.748 | 3.367 | 3.592 | 3.363 | 2.893 | 2.302 | 1.672 | 1.062 | 0.500 | 0.500 | |
100–6000 | 3.392 | 1.270 | 3.374 | 3.233 | 2.737 | 2.175 | 1.495 | 1.030 | 0.794 | 0.500 | |
Porosity | 100–1000 | 0.946 | 0.500 | 0.500 | 0.771 | 0.912 | 0.911 | 0.906 | 0.896 | 0.879 | 0.500 |
100–2000 | 0.920 | 0.500 | 0.907 | 0.913 | 0.909 | 0.899 | 0.883 | 0.855 | 0.799 | 0.500 | |
100–4000 | 0.666 | 0.926 | 0.930 | 0.926 | 0.914 | 0.891 | 0.850 | 0.765 | 0.500 | 0.500 | |
100–6000 | 0.926 | 0.803 | 0.926 | 0.923 | 0.909 | 0.885 | 0.833 | 0.757 | 0.685 | 0.500 | |
Static flow resistivity (105 Pa·s·m−2) | 100–1000 | 1.108 | 174.8 | 174.8 | 23.73 | 2.983 | 3.041 | 3.438 | 4.218 | 5.821 | 174.8 |
100–2000 | 2.490 | 174.8 | 3.350 | 2.911 | 3.213 | 3.969 | 5.434 | 8.611 | 17.75 | 174.8 | |
100–4000 | 60.64 | 2.081 | 1.820 | 2.087 | 2.858 | 4.624 | 9.192 | 25.35 | 174.8 | 174.8 | |
100–6000 | 2.122 | 16.86 | 2.073 | 2.265 | 3.211 | 5.221 | 11.74 | 27.19 | 50.63 | 174.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Shen, X.; Bai, P.; Zhang, X.; Li, Z.; Yin, Q. Optimization and Validation of Sound Absorption Performance of 10-Layer Gradient Compressed Porous Metal. Metals 2019, 9, 588. https://doi.org/10.3390/met9050588
Yang F, Shen X, Bai P, Zhang X, Li Z, Yin Q. Optimization and Validation of Sound Absorption Performance of 10-Layer Gradient Compressed Porous Metal. Metals. 2019; 9(5):588. https://doi.org/10.3390/met9050588
Chicago/Turabian StyleYang, Fei, Xinmin Shen, Panfeng Bai, Xiaonan Zhang, Zhizhong Li, and Qin Yin. 2019. "Optimization and Validation of Sound Absorption Performance of 10-Layer Gradient Compressed Porous Metal" Metals 9, no. 5: 588. https://doi.org/10.3390/met9050588
APA StyleYang, F., Shen, X., Bai, P., Zhang, X., Li, Z., & Yin, Q. (2019). Optimization and Validation of Sound Absorption Performance of 10-Layer Gradient Compressed Porous Metal. Metals, 9(5), 588. https://doi.org/10.3390/met9050588