Electrochemical Performance of Iron Oxide Nanoflakes on Carbon Cloth under an External Magnetic Field
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef]
- Naoi, K.; Ishimoto, S.; Miyanoto, J.I.; Naoi, W. Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices. Energy Environ. Sci. 2012, 5, 9363–9373. [Google Scholar] [CrossRef]
- EI-Kady, M.; Strong, V.; Dubin, S.; Kaner, R. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Gogotsi, Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 2012, 46, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Chen, I.; Liu, F.; Yang, C.; Bi, H.; Xu, F.; Huang, F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Zhang, W.; Arcelus, O.; Kim, J.; Carrasco, J.; Yoo, S.; Zheng, W.; Wang, J.; Rojo, T. Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun. 2017, 8, 15194. [Google Scholar] [CrossRef] [PubMed]
- Sheng, T.; Xu, Y.; Jiang, Y.; Huang, L.; Tian, N.; Zhou, Z.; Broadwell, I.; Sun, S. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Acc. Chem. Res. 2016, 49, 2569–2577. [Google Scholar] [CrossRef] [PubMed]
- Sheberla, D.; Bachman, J.; Elias, J.; Sun, C.; Yang, S.; Dinca, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Ding, Y.; Liu, Z.; Chen, Z.; Li, Y.; Ebrahimi, M.; Mai, W.; Wang, Z. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014, 14, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Zhu, C.X.; Kan, J.Q. Preparation and characteristics of γ-Fe2O3/Polyaniline-Curcumin composites. Metals 2015, 5, 2401–2412. [Google Scholar] [CrossRef]
- Liu, L.; Lang, J.; Zhang, P.; Hu, B.; Yan, X. Facile synthesis of Fe2O3nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Int. 2016, 8, 9335–9344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, H.R.; Zhou, B.; Ji, X.J.; Wang, H.Q.; Du, A. One-dimension diffusion preparation of concentration gradient Fe2O3/SiO2 aerogel. Molecules 2018, 23, 1502. [Google Scholar] [CrossRef] [PubMed]
- Chaudharl, N.; Chaudharl, S.; Yu, J. Cube-like alpha-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors. ChemSusChem 2014, 7, 3102–3111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.G.; Bakenov, Z.; Tan, T.Z.; Huang, J. Synthesis of core-shell carbon encapsulated Fe2O3 composite through a facile hydrothermal approach and their application as anode materials for sodium-ion batteries. Metals 2018, 8, 461. [Google Scholar] [CrossRef]
- Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 2015, 9, 5198–5207. [Google Scholar] [CrossRef] [PubMed]
- Krysa, J.; Zlamal, M.; Kment, S.; Brunclikova, M.; Hubicka, Z. TiO2 and Fe2O3 films for photoelectrochemical water splitting. Molecules 2015, 20, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Qian, G.; Watkins, J. Additive-driven self-assembly of well-ordered mesoporous carbon/Iron oxide nanoparticles composites for supercapacitors. Chem. Mater. 2014, 26, 2128–2137. [Google Scholar]
- Lukowskl, M.; Jin, S. Improved synthesis and electrical properties of Si-doped alpha-Fe2O3 nanowires. J. Phys. Chem. C 2011, 115, 12388–12395. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Feng, T.; Yao, Q.; Xie, J.; Xia, H. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anodes for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 2017, 27, 1606728. [Google Scholar] [CrossRef]
- Glasscock, J.; Bames, P.; Plumb, I.; Savvides, N. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 2007, 111, 16477–16488. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, M.; Qu, H.; Luo, Z.; Wu, S.; Colorado, H.; Wei, S.; Guo, Z. Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ. Sci. 2013, 6, 194–204. [Google Scholar] [CrossRef]
- Zhang, H.X.; Wang, Z.F.; Yang, M.Z.; Deng, Q.B. The effect of an external magnetic field on the dealloying process of the Ni-Al alloy in alkaline solution. Phys. Chem. Chem. Phys. 2017, 19, 18167–18171. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.; Munichandraiah, N. Reversible insertion of a trivalent cation onto MnO2leading to enhanced capacitance. J. Electrochem. Soc. 2011, 158, A585–A591. [Google Scholar] [CrossRef]
- Nayak, P.; Munichandraiah, N. An EQCM investigation of capacitance of MnO2 in electrolytes containing multivalent cations. J. Electroanal. Chem. 2012, 685, 37–40. [Google Scholar] [CrossRef]
- Brousse, T.; Toupin, M.; Bélanger, D. A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. J. Electrochem. Soc. 2004, 151, A614–A622. [Google Scholar] [CrossRef]
- Long, J.W.; Bélanger, D.; Brousse, T.; Sugimoto, W.; Sassin, M.B.; Crosnier, O. Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes. MRS Bull. 2011, 36, 513–522. [Google Scholar] [CrossRef]
- Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 918. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 2016, 1, 16129. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Peng, X.; Dong, S.; Ma, J.; Cui, G.; Chen, L. High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte. Electrochem. Commun. 2016, 69, 6–10. [Google Scholar] [CrossRef]
- Yang, J.; Liu, W.; Niu, H.; Cheng, K.; Ye, K.; Zhu, K.; Wang, G.; Cao, D.; Yan, J. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoOnanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Res. 2018, 11, 4744–4758. [Google Scholar] [CrossRef]
- Li, T.; Yu, H.; Zhi, L.; Zhang, W.; Dang, L.; Liu, Z.; Lei, Z. Facile electrochemical fabrication of porous Fe2O3 nanosheets for flexible asymmetric supercapacitors. J. Phys. Chem. C 2017, 121, 18982–18991. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, D.; Wang, T.; Jia, D.; Xia, W.; Lv, Y.; Cao, Y.; Tian, Y.; Liu, P. One-step solvothermal synthesis of quasi-hexagonal Fe2O3nanoplates/graphene composite as high performance electrode material for supercapacitor. Electrochim. Acta 2016, 191, 275–283. [Google Scholar] [CrossRef]
- Wang, R.; Cai, S.; Yan, Y.; Yourey, W.; Tong, W.; Tang, H. A novel high-performance electrode architecture for supercapacitors: Fe2O3nanocube and carbon nanotube functionalized carbon. J. Mater. Chem. A 2017, 5, 22648–22653. [Google Scholar] [CrossRef]
- Rani, J.; Thangavel, R.; Oh, S.; Woo, J.; Das, N.; Kim, S.; Lee, Y.; Jiang, J. High volumetric energy density hybrid supercapacitors based on reduced graphene oxide scrolls. ACS Appl. Mater. Int. 2017, 9, 22398–22407. [Google Scholar] [CrossRef] [PubMed]
- Nie, G.; Lu, X.; Chi, M.; Zhu, Y.; Yang, Z.; Song, N.; Wang, C. Hierarchical alpha-Fe2O3@MnO2 core-shell nanotubes as electrode materials for high-performance supercapacitors. Electrochim. Acta 2017, 231, 36–43. [Google Scholar] [CrossRef]
- Raut, S.; Sankapal, B. Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin film towards supercapacitor application. New J. Chem. 2016, 40, 2619–2627. [Google Scholar] [CrossRef]
- Mosqueda, H.; Crosnier, O.; Athouël, L.; Dandeville, Y.; Scudeller, Y.; Guilemet, P.; Schleich, D.; Brousse, T. Electrolytes for hybrid carbon-MnO2 electrochemical capacitors. Electrochim. Acta 2010, 25, 7479–7483. [Google Scholar] [CrossRef]
- Gambou-Bosca, A.; Belanger, D. Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for chemical capacitors. J. Power Sources 2016, 326, 595–603. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, L.; Gao, Z.; Deng, Q. Electrochemical Performance of Iron Oxide Nanoflakes on Carbon Cloth under an External Magnetic Field. Metals 2018, 8, 939. https://doi.org/10.3390/met8110939
Geng L, Gao Z, Deng Q. Electrochemical Performance of Iron Oxide Nanoflakes on Carbon Cloth under an External Magnetic Field. Metals. 2018; 8(11):939. https://doi.org/10.3390/met8110939
Chicago/Turabian StyleGeng, Lei, Zenglai Gao, and Qibo Deng. 2018. "Electrochemical Performance of Iron Oxide Nanoflakes on Carbon Cloth under an External Magnetic Field" Metals 8, no. 11: 939. https://doi.org/10.3390/met8110939
APA StyleGeng, L., Gao, Z., & Deng, Q. (2018). Electrochemical Performance of Iron Oxide Nanoflakes on Carbon Cloth under an External Magnetic Field. Metals, 8(11), 939. https://doi.org/10.3390/met8110939