## Author Contributions

J.M. performed the simulations and analyzed the results. J.M. and H.M.U. designed the work, discussed the results and wrote the manuscript.

## Funding

This research was funded by the Deutsche Forschungsgemeinschaft via the Sonderforschungsbereich 926.

## Acknowledgments

Access to the computational resources provided by the compute cluster “Elwetritsch” of the University of Kaiserslautern is appreciated.

## Conflicts of Interest

The authors declare no conflict of interest.

## References

- Yang, Z.; Johnson, R.A. An eam simulation of the α–γ iron interface. Model. Simul. Mater. Sci. Eng.
**1993**, 1, 707. [Google Scholar] [CrossRef] - Bos, C.; Sietsma, J.; Thijsse, B.J. Molecular dynamics simulation of interface dynamics during the fcc-bcc transformation of a martensitic nature. Phys. Rev. B
**2006**, 73, 104117. [Google Scholar] [CrossRef] - Sandoval, L.; Urbassek, H.M.; Entel, P. Solid-solid phase transitions and phonon softening in an embedded-atom method model for iron. Phys. Rev. B
**2009**, 80, 214108. [Google Scholar] [CrossRef] - Sandoval, L.; Urbassek, H.M. Transformation pathways in the solid-solid phase transitions of iron nanowires. Appl. Phys. Lett.
**2009**, 95, 191909. [Google Scholar] [CrossRef] - Sandoval, L.; Urbassek, H.M.; Entel, P. The Bain versus Nishiyama-Wassermann path in the martensitic transformation of Fe. New J. Phys.
**2009**, 11, 103027. [Google Scholar] [CrossRef] - Urbassek, H.M.; Sandoval, L. Molecular dynamics modeling of martensitic transformations in steels. Phase Transformations in Steels; Pereloma, E., Edmonds, D.V., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2012; Volume 2, pp. 433–463. [Google Scholar]
- Wang, B.; Urbassek, H.M. Phase transitions in an Fe system containing a bcc/fcc phase boundary: An atomistic study. Phys. Rev. B
**2013**, 87, 104108. [Google Scholar] [CrossRef] - Wang, B.; Urbassek, H.M. Role of the Surface in Solid–Solid Phase Transitions: Molecular Dynamics Study of the α–γ Transition in Fe. Metall. Mater. Trans. A
**2016**, 47, 2471–2480. [Google Scholar] [CrossRef] - Meiser, J.; Urbassek, H.M. Martensitic transformation of pure iron at a grain boundary: Atomistic evidence for a two-step Kurdjumov–Sachs-Pitsch pathway. AIP Adv.
**2016**, 6, 085017. [Google Scholar] [CrossRef] - Karewar, S.; Sietsma, J.; Santofimia, M.J. Effect of pre-existing defects in the parent fcc phase on atomistic mechanisms during the martensitic transformation in pure Fe: A molecular dynamics study. Acta Mater.
**2018**, 142, 71–81. [Google Scholar] [CrossRef] - Wang, B.; Urbassek, H.M. Atomistic dynamics of the bcc ↔ fcc phase transition in iron: Competition of homo- and heterogeneous phase growth. Comput. Mater. Sci.
**2014**, 81, 170–177. [Google Scholar] [CrossRef] - Meyer, R.; Entel, P. Martensite-austenite transition and phonon dispersion curves of Fe
_{1 − x}Ni_{x} studied by molecular-dynamics simulations. Phys. Rev. B **1998**, 57, 5140. [Google Scholar] [CrossRef] - Wang, B.; Sak-Saracino, E.; Gunkelmann, N.; Urbassek, H.M. Molecular-dynamics study of the α↔γ phase transition in Fe-C. Comput. Mater. Sci.
**2014**, 82, 399–404. [Google Scholar] [CrossRef] - Wang, B.; Sak-Saracino, E.; Sandoval, L.; Urbassek, H.M. Martensitic and austenitic phase transformations in Fe-C nanowires. Model. Simul. Mater. Sci. Eng.
**2014**, 22, 045003. [Google Scholar] [CrossRef] - Sak-Saracino, E.; Urbassek, H.M. Temperature-induced phase transformation of Fe
_{1 − x}Ni_{x} alloys: Molecular-dynamics approach. Eur. Phys. J. B **2015**, 88, 169. [Google Scholar] [CrossRef] - Toji, Y.; Matsuda, H.; Herbig, M.; Choi, P.P.; Raabe, D. Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater.
**2014**, 65, 215–228. [Google Scholar] [CrossRef] - Toji, Y.; Miyamoto, G.; Raabe, D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation. Acta Mater.
**2015**, 86, 137–147. [Google Scholar] [CrossRef] - Castro Cerda, F.M.; Goulas, C.; Sabirov, I.; Papaefthymiou, S.; Monsalve, A.; Petrov, R.H. Microstructure, texture and mechanical properties in a low carbon steel after ultrafast heating. Mater. Sci. Eng. A
**2016**, 672, 108–120. [Google Scholar] [CrossRef] - Castro Cerda, F.M.; Schulz, B.; Papaefthymiou, S.; Artigas, A.; Monsalve, A.; Petrov, R.H. The Effect of Ultrafast Heating on Cold-Rolled Low Carbon Steel: Formation and Decomposition of Austenite. Metals
**2016**, 6, 321. [Google Scholar] [CrossRef] - Bouzouni, M.; Papaefthymiou, S. Preliminary Study of Carbide Dissolution during an Ultra-Fast Heat Treatment in Chromium Molybdenum Steel. Int. J. Metall. Met. Phys.
**2017**, 2, 005. [Google Scholar] - Bouzouni, M.; Papaefthymiou, S. Modeling of the Steel Microstructure Gained after the Application of an Ultra-Fast Heat Treatment. J. Nanosci. Adv. Tech.
**2017**, 2, 15–19. [Google Scholar] [CrossRef] - Papaefthymiou, S.; Goulas, C.; Cerda, F.M.C.; Geerlofs, N.; Petrov, R. The Effect of Heating Rate on the Microstructure of a Soft-Annealed Medium Carbon Steel. Steel Res. Int.
**2017**, 88, 1700158. [Google Scholar] [CrossRef] - Cerda, F.M.C.; Vercruysse, F.; Goulas, C.; Schulz, B.; Petrov, R.H. ‘Flash’ Annealing in a Cold-Rolled Low Carbon Steel Alloyed With Cr, Mn, Mo, and Nb: Part I—Continuous Phase Transformations. Steel Res. Int.
**2018**. [Google Scholar] [CrossRef] - Ghaemifar, S.; Mirzadeh, H. Refinement of Banded Structure via Thermal Cycling and Its Effects on Mechanical Properties of Dual Phase Steel. Steel Res. Int.
**2018**, 89, 1700531. [Google Scholar] [CrossRef] - Papaefthymiou, S.; Bouzouni, M.; Petrov, R.H. Study of Carbide Dissolution and Austenite Formation during Ultra—Fast Heating in Medium Carbon Chromium Molybdenum Steel, Metals. Metals
**2018**, 8, 646. [Google Scholar] [CrossRef] - Howe, J.M.; Spanos, G. Atomic structure of the austenite-cementite interface of proeutectoid cementite plates. Philos. Mag. A
**1999**, 79, 9. [Google Scholar] [CrossRef] - Shtansky, D.V.; Nakai, K.; Ohmori, Y. Mechanism and crystallography of ferrite precipitation from cementite in an Fe-Cr-C alloy during austenitization. Philos. Mag. A
**1999**, 79, 1655. [Google Scholar] - Gerstein, G.; Nürnberger, F.; Dudzinski, W.; Grygier, D.; Schaper, M.; Milenin, A. Structural evolution of thin lamellar cementite during cold drawing of eutectoid steels. Procedia Eng.
**2014**, 81, 694–699. [Google Scholar] [CrossRef] - Zhou, D.S.; Shiflet, G.J. Ferrite: cementite crystallography in pearlite. Metall. Mater. Trans. A
**1992**, 23, 1259–1269. [Google Scholar] [CrossRef] - Bagaryatsky, Y.A. Possible mechanism of martensite decomposition. Dokl. Akad. Nauk. SSSR
**1950**, 73, 1161–1164. [Google Scholar] - Petch, N.J. The orientation relationships between cementite and α-iron. Acta Cryst.
**1953**, 6, 96. [Google Scholar] [CrossRef] - Pitsch, W. Der Orientierungszusammenhang zwischen Zementit und Ferrit im Perlit. Acta Metall.
**1962**, 10, 79–80. [Google Scholar] [CrossRef] - Ghosh, G. A first-principles study of cementite (Fe
_{3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli. AIP Adv. **2015**, 5, 087102. [Google Scholar] [CrossRef] - Ledbetter, H. Polycrystalline elastic constants of in situ cementite (Fe
_{3}C). Mat. Sci. Eng. A **2010**, 527, 2657. [Google Scholar] [CrossRef] - Liyanage, L.S.I.; Kim, S.G.; Houze, J.; Kim, S.; Tschopp, M.A.; Baskes, M.I.; Horstemeyer, M.F. Structural, elastic, and thermal properties of cementite (Fe
_{3}C) calculated using a modified embedded atom method. Phys. Rev. B **2014**, 89, 094102. [Google Scholar] [CrossRef] - Ghaffarian, H.; Taheri, A.K.; Ryu, S.; Kang, K. Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation. Curr. Appl. Phys.
**2016**, 16, 1015–1025. [Google Scholar] [CrossRef][Green Version] - Nematollahi, G.A.; von Pezold, J.; Neugebauer, J.; Raabe, D. Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite. Acta Mater.
**2013**, 61, 1773–1784. [Google Scholar] [CrossRef] - Kim, J.; Kang, K.; Ryu, S. Characterization of the misfit dislocations at the ferrite/cementite interface in pearlitic steel: An atomistic simulation study. Int. J. Plast.
**2016**, 83, 302–312. [Google Scholar] [CrossRef] - Levchenko, E.V.; Evteev, A.V.; Belova, I.V.; Murch, G.E. Molecular dynamics simulation and theoretical analysis of carbon diffusion in cementite. Acta Mater.
**2009**, 57, 846. [Google Scholar] [CrossRef] - Evteev, A.; Levchenko, E.; Belova, I.; Murch, G. Atomic Mechanism of Carbon Diffusion in Cementite. Defect Diffus. Forum
**2008**, 277, 101. [Google Scholar] [CrossRef] - Nose, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.
**1984**, 81, 511. [Google Scholar] [CrossRef] - Hoover, W.G. Canonical dynamics: equilibrium phase-space distribution. Phys. Rev. A
**1985**, 31, 1695. [Google Scholar] [CrossRef] - Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys.
**1995**, 117, 1–19. [Google Scholar] [CrossRef][Green Version] - Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng.
**2010**, 18, 015012. [Google Scholar] [CrossRef] - Faken, D.; Jonsson, H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci.
**1994**, 2, 279–286. [Google Scholar] [CrossRef] - Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem.
**1987**, 91, 4950–4963. [Google Scholar] [CrossRef] - Johnson, R.A.; Dienes, G.J.; Damask, A.C. Calculations of the energy and migration characteristics of carbon and nitrogen in alpha-iron and vanadium. Acta Metall.
**1964**, 12, 1215. [Google Scholar] [CrossRef] - Sak-Saracino, E.; Urbassek, H.M. Free energies of austenite and martensite Fe-C alloys: an atomistic study. Philos. Mag.
**2014**, 94, 933–945. [Google Scholar] [CrossRef] - Sak-Saracino, E.; Urbassek, H.M. The α↔γ transformation of an Fe
_{1 − x}Cr_{x} alloy: A molecular-dynamics approach. Int. J. Mod. Phys. C **2016**, 27, 1650124. [Google Scholar] [CrossRef] - Gunkelmann, N.; Ledbetter, H.; Urbassek, H.M. Experimental and atomistic study of the elastic properties of α′ Fe-C martensite. Acta Mater.
**2012**, 60, 4901–4907. [Google Scholar] [CrossRef] - Janßen, J.; Gunkelmann, N.; Urbassek, H.M. Influence of C concentration on elastic moduli of α′-Fe
_{1 − x}C_{x} alloys. Philos. Mag. **2016**, 96, 1448–1462. [Google Scholar] [CrossRef] - Eckstein, W. Computer Simulation of Ion-Solid Interactions; Springer: Berlin, Germany, 1991. [Google Scholar]
- Andersen, H.H.; Sigmund, P. Defect distributions in channeling experiments. Nucl. Instr. Meth.
**1965**, 38, 238. [Google Scholar] [CrossRef] - Hestenes, M.R.; Stiefel, E. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Natl. Bur. Stand.
**1952**, 49, 409. [Google Scholar] [CrossRef] - Wood, I.G.; Vocadlo, L.; Knight, K.S.; Dobson, D.P.; Marshall, W.G.; Price, G.D.; Brodholt, J. Thermal expansion and crystal structure of cementite, Fe
_{3}C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J. Appl. Crystallogr. **2004**, 37, 82–90. [Google Scholar] [CrossRef] - Henriksson, K.O.E.; Nordlund, K. Simulations of cementite: An analytical potential for the Fe-C system. Phys. Rev. B
**2009**, 79, 144107. [Google Scholar] [CrossRef] - Mookherjee, M. Elasticity and anisotropy of Fe
_{3}C at high pressures. Am. Mineral. **2011**, 96, 1530–1536. [Google Scholar] [CrossRef] - Meyer, R. Computersimulationen Martensitischer Phasenübergänge in Eisen-Nickel- und Nickel-Aluminium- Legierungen. Ph.D. Thesis, University Duisburg, Duisburg, Germany, 1995. [Google Scholar]
- Freitas, R.; Asta, M.; de Koning, M. Nonequilibrium free-energy calculation of solids using LAMMPS. Comput. Mater. Sci.
**2016**, 112, 333. [Google Scholar] [CrossRef] - Wang, B.; Urbassek, H.M. Computer simulation of strain-induced phase transformations in thin Fe films. Model. Simul. Mater. Sci. Eng.
**2013**, 21, 085007. [Google Scholar] [CrossRef] - Sak-Saracino, E.; Urbassek, H.M. Effect of uni- and biaxial strain on phase transformations in Fe thin films. Int. J. Comp. Mat. Sci. Eng.
**2016**, 5, 1650001. [Google Scholar] [CrossRef] - Mao, H.K.; Bassett, W.A.; Takahashi, T. Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar. J. Appl. Phys.
**1967**, 38, 272. [Google Scholar] [CrossRef] - Wang, F.M.; Ingalls, R. Iron bcc-hcp transition: Local structure from x-ray-absorption fine structure. Phys. Rev. B
**1998**, 57, 5647. [Google Scholar] [CrossRef] - Nishiyama, Z. Mechanism of transformation from face-centred to body-centred cubic lattice. Sci. Rep. Tohoku Imp. Univ.
**1934**, 23, 637. [Google Scholar] - Wassermann, G. Einfluß der α–γ-Umwandlung eines irreversiblen Nickelstahls auf Kristallorientierung und Zugfestigkeit. Arch. Eisenhüttenwes
**1933**, 6, 347. [Google Scholar] [CrossRef] - Kurdjumov, G.V.; Sachs, G. Über den Mechanismus der Stahlhärtung. Z. Phys.
**1930**, 64, 325–343. [Google Scholar] [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).