Machine Learning-Based Prediction of Young’s Modulus in Ti-Alloys
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Description
2.2. Data Processing and Analysis
2.3. Machine Learning Models
2.4. Model Training and Evaluation Metrics
3. Results and Model Evaluation
3.1. Performance Comparison of ML Models
3.2. Random Forest Prediction Results
3.3. SHAP-Based Feature Importance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ML | Machine Learning |
| YM | Young’s modulus |
| YS | Yield strength |
| UTS | Ultimate tensile strength |
| HV | Vickers hardness |
| DAR | Deformation at rupture |
| moe | Molybdenum equivalent parameter |
| RF | Random Forest |
| MLP | Multi-Layer Perceptron |
| SHAP | SHapley Additive exPlanations |
References
- Pushp, P.; Dasharath, S.M.; Arati, C. Classification and applications of titanium and its alloys. Mater. Today Proc. 2022, 54, 537–542. [Google Scholar] [CrossRef]
- Gummadi, J.; Alanka, S. A review on titanium and titanium alloys with other metals for biomedical applications prepared by powder metallurgy techniques. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Yan, S.; Song, G.-L.; Li, Z.; Wang, H.; Zheng, D.; Cao, F.; Horynova, M.; Dargusch, M.S.; Zhou, L. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. J. Mater. Sci. Technol. 2018, 34, 421–435. [Google Scholar] [CrossRef]
- Kang, L.; Yang, C. A Review on High-Strength Titanium Alloys: Microstructure, Strengthening, and Properties. Adv. Eng. Mater. 2019, 21, 1801359. [Google Scholar] [CrossRef]
- Williams, J.; Boyer, R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components. Metals 2020, 10, 705. [Google Scholar] [CrossRef]
- Alshammari, Y.; Yang, F.; Bolzoni, L. Fabrication and characterisation of low-cost powder metallurgy Ti-xCu-2.5Al alloys produced for biomedical applications. J. Mech. Behav. Biomed. Mater. 2022, 126, 105022. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Mirabad, H.M.; Hemmati, A.; Kim, H.S. Processing and microstructure of Ti-Cu binary alloys: A comprehensive review. Prog. Mater. Sci. 2022, 127, 100933. [Google Scholar] [CrossRef]
- Alshammari, Y.; Jia, M.; Yang, F.; Bolzoni, L. The effect of α+ β forging on the mechanical properties and microstructure of binary titanium alloys produced via a cost-effective powder metallurgy route. Mater. Sci. Eng. A 2019, 769, 138496. [Google Scholar] [CrossRef]
- Cardoso, G.C.; Buzalaf, M.A.; Correa, D.R.; Grandini, C.R. Effect of Thermomechanical Treatments on Microstructure, Phase Composition, Vickers Microhardness, and Young’s Modulus of Ti-xNb-5Mo Alloys for Biomedical Applications. Metals 2022, 12, 788. [Google Scholar] [CrossRef]
- Semenova, I.; Polyakov, A.; Gareev, A.; Makarov, V.; Kazakov, I.; Pesin, M. Machinability Features of Ti-6Al-4V Alloy with Ultrafine-Grained Structure. Metals 2023, 13, 1721. [Google Scholar] [CrossRef]
- Klinge, L.; Kluy, L.; Spiegel, C.; Siemers, C.; Groche, P.; Coraça-Huber, D. Nanostructured Ti-13Nb-13Zr alloy for implant application—Material scientific, technological, and biological aspects. Front. Bioeng. Biotechnol. 2023, 11, 1255947. [Google Scholar] [CrossRef] [PubMed]
- Karre, R.; Niranjan, M.K.; Dey, S.R. First principles theoretical investigations of low Young’s modulus beta Ti–Nb and Ti–Nb–Zr alloys compositions for biomedical applications. Mater. Sci. Eng. C 2015, 50, 52–58. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; He, H.; Lou, J.; Li, Y.; Li, D.; Chen, Y.; Liu, S. Fabrication, Structure and Mechanical and Ultrasonic Properties of Medical Ti6Al4V Alloys Part I: Microstructure and Mechanical Properties of Ti6Al4V Alloys Suitable for Ultrasonic Scalpel. Materials 2020, 13, 478. [Google Scholar] [CrossRef] [PubMed]
- Ozan, S.; Lin, J.; Zhang, Y.; Li, Y.; Wen, C. Cold rolling deformation and annealing behavior of a β-type Ti–34Nb–25Zr titanium alloy for biomedical applications. J. Mater. Res. Technol. 2020, 9, 2308–2318. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, J.; Huo, Y.; Sui, Y.; Zhang, J.; Guo, S.; Zhao, X. Design of low modulus β-type titanium alloys by tuning shear modulus C44. J. Alloys Compd. 2018, 745, 579–585. [Google Scholar] [CrossRef]
- Doan Tran, H.; Kim, C.; Chen, L.; Chandrasekaran, A.; Batra, R.; Venkatram, S.; Kamal, D.; Lightstone, J.P.; Gurnani, R.; Shetty, P.; et al. Machine-learning predictions of polymer properties with Polymer Genome. J. Appl. Phys. 2020, 128, 171104. [Google Scholar] [CrossRef]
- Han, T.; Huang, J.; Sant, G.; Neithalath, N.; Kumar, A. Predicting mechanical properties of ultrahigh temperature ceramics using machine learning. J. Am. Ceram. Soc. 2022, 105, 6851–6863. [Google Scholar] [CrossRef]
- Ghetiya, N.D.; Patel, K.M. Prediction of Tensile Strength in Friction Stir Welded Aluminium Alloy Using Artificial Neural Network. Procedia Technol. 2014, 14, 274–281. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Zhang, Y.; Kitipornchai, S.; Yang, J. Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation. Mater. Des. 2022, 213, 110334. [Google Scholar] [CrossRef]
- Kibrete, F.; Trzepieciński, T.; Gebremedhen, H.S.; Woldemichael, D.E. Artificial Intelligence in Predicting Mechanical Properties of Composite Materials. J. Compos. Sci. 2023, 7, 364. [Google Scholar] [CrossRef]
- Lee, J.A.; Almond, D.P.; Harris, B. The use of neural networks for the prediction of fatigue lives of composite materials. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1159–1169. [Google Scholar] [CrossRef]
- Altinkok, N.; Koker, R. Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al–Si–Mg)-aluminium matrix composites. Mater. Des. 2004, 25, 595–602. [Google Scholar] [CrossRef]
- Koker, R.; Altinkok, N.; Demir, A. Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater. Des. 2007, 28, 616–627. [Google Scholar] [CrossRef]
- Marković, G.; Manojlović, V.; Ružić, J.; Sokić, M. Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning. Materials 2023, 16, 6355. [Google Scholar] [CrossRef] [PubMed]
- Kamal, T.; Gouthama; Upadhyaya, A. Machine Learning Based Sintered Density Prediction of Bronze Processed by Powder Metallurgy Route. Met. Mater. Int. 2023, 29, 1761–1774. [Google Scholar] [CrossRef]
- Deng, Z.; Yin, H.; Jiang, X.; Zhang, C.; Zhang, K.; Zhang, T.; Xu, B.; Zheng, Q.; Qu, X. Machine leaning aided study of sintered density in Cu-Al alloy. Comput. Mater. Sci. 2018, 155, 48–54. [Google Scholar] [CrossRef]
- Dinibutun, S.; Alshammari, Y.; Parol, J.; Bolzoni, L. Machine learning approaches for predicting ultimate tensile strength in 9% Cr steels, International Conference on Civil and Environmental Engineering for Resilient. Smart Sustain. Solut. 2025, 48, 501–509. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Zhao, X.; Liu, Y.; Huang, H.; Su, Y. Machine-Learning-Driven Design of High-Elastocaloric NiTi-Based Shape Memory Alloys. Metals 2024, 14, 1193. [Google Scholar] [CrossRef]
- Salvador, C.A.F.; Maia, E.L.; Costa, F.H.; Escobar, J.D.; Oliveira, J.P. A compilation of experimental data on the mechanical properties and microstructural features of Ti-alloys. Sci. Data 2022, 9, 188. [Google Scholar] [CrossRef]
- Hussein, A.; Falcarin, P.; Sadiq, A. Enhancement performance of random forest algorithm via one hot encoding for IoT IDS. Period. Eng. Nat. Sci. PEN 2021, 9, 579–591. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. An Introduction to Statistical Learning, with Applications in Python; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Bolzoni, L.; Carson, J.K.; Yang, F. Combinatorial structural-analytical models for the prediction of the mechanical behaviour of isotropic porous pure metals. Acta Mater. 2021, 207, 116664. [Google Scholar] [CrossRef]







| Property/Numerical Variable | Description |
|---|---|
| YM | Experimental Young modulus |
| YM_err | The error associated with the Young’s modulus |
| YS | Experimental yield stress |
| UTS | Ultimate tensile strength or maximum compression strength (in compression tests) |
| UTS_err | The error associated with the ultimate tensile strength |
| DAR | Deformation at the rupture point or maximum reported strain (negative values for compression tests) |
| HV | Experimental Vickers hardness |
| HV_err | The error associated with the hardness |
| F3 | =1, the material shows a non-linear elastic behavior |
| Parameter | Count | Mean | Std | Min | 50% | Max |
|---|---|---|---|---|---|---|
| YM | 240 | 81.61 | 21.8 | 45 | 78 | 157 |
| YM_err | 128 | 3.37 | 2.78 | 0.3 | 3 | 20 |
| YS | 274 | 722.53 | 344.83 | 130 | 662.5 | 1880 |
| UTS | 193 | 888.4 | 417.32 | 360 | 762 | 2400 |
| UTS_err | 59 | 28.34 | 24.3 | 3 | 20 | 108 |
| DAR | 260 | 8.83 | 25.5 | −50 | 12.35 | 74 |
| HV | 152 | 299.94 | 94.73 | 134 | 283 | 560 |
| HV_err | 119 | 7.4 | 5.04 | 1 | 6 | 29 |
| F3 | 286 | 0.22 | 0.41 | 0 | 0 | 1 |
| Property/Categorical Variable | Description |
|---|---|
| moe_class | A classification based on the β-phase stability. Possible values are: “rich”, “near”, “meta”, “stable” or “other”. |
| ph1 | Identification of the predominant phase (matrix). |
| ph2 | Identification of the secondary phase. |
| ph3 | Identification of the tertiary phase. |
| condition | Processing conditions to which the material was subjected: ST-WQ (solution treated and water quenched), ST-AC (ST and air-cooled), ST-FC (ST and furnace cooled), PM (powder-metallurgy), As-cast. |
| Model | R2 | MAE | MSE | RMSE |
|---|---|---|---|---|
| Random Forest | 0.8608 | 6.5038 | 67.6474 | 8.2248 |
| XGBoost | 0.8528 | 6.6638 | 71.5531 | 8.4589 |
| CatBoost | 0.8523 | 6.5337 | 71.7996 | 8.4735 |
| MLP | 0.5127 | 9.4196 | 236.8281 | 15.3892 |
| Stacking Regressor | 0.7471 | 7.9212 | 122.8807 | 11.0852 |
| Sample | Actual Value | Predicted Value | Difference |
|---|---|---|---|
| 1 | 90 | 90.4557 | −0.4557 |
| 2 | 80.36 | 80.8105 | −0.4505 |
| 3 | 84 | 85.8223 | −1.8223 |
| 4 | 56 | 55.7392 | 0.2608 |
| 5 | 92 | 96.8641 | −4.8641 |
| 6 | 53.7 | 62.5383 | −8.8383 |
| 7 | 75 | 84.8045 | −9.8045 |
| 8 | 66 | 68.7397 | −2.7397 |
| 9 | 124 | 121.6558 | 2.3442 |
| 10 | 80.36 | 68.4279 | 11.9321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dinibutun, S.; Alshammari, Y.; Bolzoni, L. Machine Learning-Based Prediction of Young’s Modulus in Ti-Alloys. Metals 2026, 16, 233. https://doi.org/10.3390/met16020233
Dinibutun S, Alshammari Y, Bolzoni L. Machine Learning-Based Prediction of Young’s Modulus in Ti-Alloys. Metals. 2026; 16(2):233. https://doi.org/10.3390/met16020233
Chicago/Turabian StyleDinibutun, Seza, Yousef Alshammari, and Leandro Bolzoni. 2026. "Machine Learning-Based Prediction of Young’s Modulus in Ti-Alloys" Metals 16, no. 2: 233. https://doi.org/10.3390/met16020233
APA StyleDinibutun, S., Alshammari, Y., & Bolzoni, L. (2026). Machine Learning-Based Prediction of Young’s Modulus in Ti-Alloys. Metals, 16(2), 233. https://doi.org/10.3390/met16020233

