Effects of Cl− and Acetic Acid Contents on the Corrosion Behavior of Al in SWAAT Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. SWAAT Immersion Test
2.3. Electrochemical Measurements
2.4. Corrosion Morphology Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benedyk, J.C. Aluminum Alloys for Lightweight Automotive Structures. In Materials, Design and Manufacturing for Lightweight Vehicles; Elsevier: Amsterdam, The Netherlands, 2010; pp. 79–113. ISBN 9781845694630. [Google Scholar]
- Mondolfo, L.F. Aluminum Alloys: Structure and Properties; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 1483144828. [Google Scholar]
- Brandt, R.; Neuer, G. Electrical Resistivity and Thermal Conductivity of Pure Aluminum and Aluminum Alloys up to and above the Melting Temperature. Int. J. Thermophys. 2007, 28, 1429–1446. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials 2023, 16, 2972. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Chiba, M. Role of Anodic Oxide Films in the Corrosion of Aluminum and Its Alloys. Corros. Rev. 2018, 36, 35–54. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, S.; Ouyang, P. The Influence of Aluminum Content on Thermal Properties of Copper-Aluminum Alloys: A First-Principles Calculation. J. Phys. Conf. Ser. 2024, 2819, 012013. [Google Scholar] [CrossRef]
- Natishan, P.M.; O’Grady, W.E. Chloride Ion Interactions with Oxide-Covered Aluminum Leading to Pitting Corrosion: A Review. J. Electrochem. Soc. 2014, 161, C421–C432. [Google Scholar] [CrossRef]
- Abtahi1, C.M.A.; Islam, M.A.; Hridoy, M.W. Investigation of Aluminum Corrosion Due to Surface Area in Neutral and Acidic Solutions. In Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2021 (ICMERE 2021), Chattogram, Bangladesh, 12–14 December 2021. [Google Scholar]
- Szklarska-Śmiałowska, Z. Pitting corrosion of aluminum. Corros. Sci. 1999, 41, 1743–1767. [Google Scholar] [CrossRef]
- Shrestha, B.R.; Hu, Q.; Baimpos, T.; Kristiansen, K.; Israelachvili, J.N.; Valtiner, M. Real-Time Monitoring of Aluminum Crevice Corrosion and Its Inhibition by Vanadates with Multiple Beam Interferometry in a Surface Forces Apparatus. J. Electrochem. Soc. 2015, 162, C327–C332. [Google Scholar] [CrossRef]
- Ifezue, D.; Tobins, F.H. Corrosion Failure of Aluminum Heat Exchanger Tubes. J. Fail. Anal. Prev. 2015, 15, 541–547. [Google Scholar] [CrossRef]
- Ahmed, H.; Nasrazadani, S.; Sadat, H. Comparison of Thermal Effectiveness and Crevice Corrosion Risk of Fin Geometry on All-Aluminum Microchannel Heat Exchangers. J. Adv. Res. Fluid Mech. Therm. Sci. 2023, 105, 192–203. [Google Scholar] [CrossRef]
- ISO 9277:2010; Determination of the Specific Surface Area of Solids by Gas Adsorption—BET Method. International Organization for Standardization: Geneva, Switzerland, 2010.
- Rungta, R.; Pandit, N. Accelerated Corrosion Testing of Automotive Evaporators and Condensers. SAE Tech. Pap. 2018, 2018-01-0062. [Google Scholar] [CrossRef]
- Scott, A.C.; Woods, R.A.; Harris, J.F. Accelerated Corrosion Test Methods for Evaluating External Corrosion Resistance of Vacuum Brazed Aluminum Heat Exchangers. SAE Trans. 1991, 100, 578–586. [Google Scholar]
- Afshar, F.N.; Szala, E.; Wittebrood, A.; Mulder, R.; Mol, J.M.C.; Terryn, H.; de Wit, J.H.W. Influence of Material Related Parameters in Sea Water Acidified Accelerated Test, Reliability Analysis and Electrochemical Evaluation of the Test for Aluminum Brazing Sheet. Corros. Sci. 2011, 53, 3923–3933. [Google Scholar] [CrossRef]
- Leszczyńska-Madej, B.; Richert, M.; Wąsik, A.; Szafron, A. Analysis of the Microstructure and Selected Properties of the Aluminium Alloys Used in Automotive Air-Conditioning Systems. Metals 2018, 8, 10. [Google Scholar] [CrossRef]
- Moema, J.; Siyasiya, C.; Morudu, V.; Hadebe, N.; Buthelezi, T. An Investigation on SWAAT and Electrochemical Corrosion Behaviour of Roll-Bonded and Brazed Aluminium Alloy—AA4045/AA3003. MATEC Web Conf. 2023, 388, 03002. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Hrnjak, P. An Evaluation of the Effect of Corrosion Tests on Thermal Performance of Aluminum Heat Exchangers. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 24–28 May 2021. [Google Scholar]
- Kim, Y.S.; Park, I.J.; Kim, J.G. Simulation Approach for Cathodic Protection Prediction of Aluminum Fin-Tube Heat Exchanger Using Boundary Element Method. Metals 2019, 9, 376. [Google Scholar] [CrossRef]
- Al-Moubaraki, A.H.; Al-Rushud, H. The Red Sea as a corrosive environment: Corrosion rates and corrosion mechanism of aluminum alloys 7075, 2024, and 6061. Int. J. Corros. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Ezuber, H.; El-Houd, A.; El-Shawesh, F. A Study on the Corrosion Behavior of Aluminum Alloys in Seawater. Mater. Des. 2008, 29, 801–805. [Google Scholar] [CrossRef]
- Sanni, O.; Ren, J.; Jen, T.C. Agro-Industrial Wastes as Corrosion Inhibitor for 2024-T3 Aluminum Alloy in Hydrochloric Acid Medium. Results Eng. 2022, 16, 100676. [Google Scholar] [CrossRef]
- Fushimi, T.; Suruga, K.; Oshima, Y.; Fukiharu, M.; Tsukamoto, Y.; Goda, T. Dietary Acetic Acid Reduces Serum Cholesterol and Triacylglycerols in Rats Fed a Cholesterol-Rich Diet. Br. J. Nutr. 2006, 95, 916–924. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, Z.; Cao, F.; Gao, Z.; Zhang, J.; Cao, C. Analysis of Pitting Corrosion Behavior of Pure Al in Sodium Chloride Solution with the Wavelet Technique. J. Electroanal. Chem. 2005, 578, 143–150. [Google Scholar] [CrossRef]
- Adams, F.V.; Akinwamide, S.O.; Obadele, B.; Olubambi, P.A. Comparison Study on the Corrosion Behavior of Aluminum Alloys in Different Acidic Media. Mater. Today Proc. 2021, 38, 1040–1043. [Google Scholar] [CrossRef]
- Halambek, J.; Bubalo, M.C.; Redovniković, I.R.; Berković, K. Corrosion Behaviour of Aluminium and AA5754 Alloy in 1% Acetic Acid Solution in Presence of Laurel Oil. Int. J. Electrochem. Sci. 2014, 9, 5496–5506. [Google Scholar] [CrossRef]
- Abodi, L.C.; Derose, J.A.; Van Damme, S.; Demeter, A.; Suter, T.; Deconinck, J. Modeling Localized Aluminum Alloy Corrosion in Chloride Solutions under Non-Equilibrium Conditions: Steps toward Understanding Pitting Initiation. Electrochim. Acta 2012, 63, 169–178. [Google Scholar] [CrossRef]
- Emregül, K.C.; Aksüt, A.A. The Effect of Sodium Molybdate on the Pitting Corrosion of Aluminum. Corros. Sci. 2003, 45, 2415–2433. [Google Scholar] [CrossRef]
- Xu, W.; Liu, J.; Zhu, H. Pitting Corrosion of Friction Stir Welded Aluminum Alloy Thick Plate in Alkaline Chloride Solution. Electrochim. Acta 2010, 55, 2918–2923. [Google Scholar] [CrossRef]
- Abd El Aal, E.E.; Abd El Wanees, S.; Farouk, A.; Abd El Haleem, S.M. Factors Affecting the Corrosion Behaviour of Aluminium in Acid Solutions. II. Inorganic Additives as Corrosion Inhibitors for Al in HCl Solutions. Corros. Sci. 2013, 68, 14–24. [Google Scholar] [CrossRef]
- Liu, M.; Jin, Y.; Zhang, C.; Leygraf, C.; Wen, L. Density-Functional Theory Investigation of Al Pitting Corrosion in Electrolyte Containing Chloride Ions. Appl. Surf. Sci. 2015, 357, 2028–2038. [Google Scholar] [CrossRef]
- Oya, Y.; Kojima, Y. Effects of Acetic Acid on Pitting Corrosion Acceleration in Corrosion Tests of Aluminum Alloys. J. Jpn. Inst. Light Met. 2012, 62, 244–248. [Google Scholar] [CrossRef]
- Ziobro, G.; Richert, M.; Wiewióra, M. Influence of corrosion on mechanical properties and microstructure of 3xxx, 5xxx, and 6xxx series aluminum alloys. Metall. Foundry Eng. 2017, 43, 291. [Google Scholar] [CrossRef]
- Wojdat, T.; Kustroń, P.; Jaśkiewicz, K.; Pabian, J. Study of Corrosion, Structural, and Mechanical Properties of En Aw-6082 and En Aw-7075 Welded Joints. Materials 2021, 14, 4349. [Google Scholar] [CrossRef]
- Bauger, Ø.; Furu, T. Results from Field Testing of Aluminium Extrusions on a Truck for Six Years. Comparisons with Accelerated Corrosion Testing. In Proceedings of the 12th International Conference on Aluminium Alloys, Yokohama, Japan, 5–9 September 2010; p. 6. [Google Scholar]
- Laferrere, A.; Parson, N.; Zhou, X.; Thompson, G. Effect of Microstructure on the Corrosion Behaviour of Extruded Heat Exchanger Aluminium Alloys. Surf. Interface Anal. 2013, 45, 1597–1603. [Google Scholar] [CrossRef]
- Soares, B.M.C.; Dantas, S.T.; Anjos, C.A.R. Corrosion of Aluminum for Beverage Packaging in Acidic Media Containing Chlorides and Copper Ions. J. Food Process Eng. 2017, 40, e12571. [Google Scholar] [CrossRef]
- Cui, T.F.; Liu, D.X.; Shi, P.A.; Liu, J.J.; Yi, Y.H.; Zhou, H.L. Effect of NaCl Concentration, PH Value and Tensile Stress on the Galvanic Corrosion Behavior of 5050 Aluminum Alloy. Mater. Corros. 2016, 67, 72–83. [Google Scholar] [CrossRef]
- Szunerits, S.; Walt, D.R. Aluminum Surface Corrosion and the Mechanism of Inhibitors Using PH and Metal Ion Selective Imaging Fiber Bundles. Anal. Chem. 2002, 74, 886–894. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, E. Sequence of Steps in the Pitting of Aluminum by Chloride Ions. Corros. Sci. 2003, 45, 1421–1438. [Google Scholar] [CrossRef]
- Peng, C.; Liu, Y.W.; Guo, M.X.; Gu, T.Z.; Wang, C.; Wang, Z.Y.; Sun, C. Corrosion and Pitting Behavior of Pure Aluminum 1060 Exposed to Nansha Islands Tropical Marine Atmosphere. Trans. Nonferrous Met. Soc. China 2022, 32, 448–460. [Google Scholar] [CrossRef]
- Pyun, S.-I.; Moon, S.-M. Corrosion Mechanism of Pure Aluminium in Aqueous Alkaline Solution. J. Solid State Electrochem. 2000, 4, 267–272. [Google Scholar] [CrossRef]
- Abdel-Gaber, A.M.; Khamis, E.; Abo-ElDahab, H.; Adeel, S. Inhibition of Aluminium Corrosion in Alkaline Solutions Using Natural Compound. Mater. Chem. Phys. 2008, 109, 297–305. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Zheng, L.; Jin, Z.; Liu, H.; Liu, L.; Gao, Z.; Meng, G.; Liu, H.; Liu, H. Corrosion of Aluminum Alloy 7075 Induced by Marine Aspergillus Terreus with Continued Organic Carbon Starvation. npj Mater. Degrad. 2022, 6, 27. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Huang, H.; Zuo, X.; Cheng, Y. Influence of Chloride Ion Concentration and Temperature on the Corrosion of Cu–Al Composite Plates in Salt Fog. J. Alloys Compd. 2020, 821, 153249. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Zhang, G.; Liu, H. The corrosion promoting mechanism of Aspergillus niger on 5083 aluminum alloy and inhibition performance of miconazole nitrate. Corros. Sci. 2020, 176, 108930. [Google Scholar] [CrossRef]
- Skrovan, J. Enhancing Aluminum Corrosion for Hydrogen Generation. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2009. [Google Scholar]
- Rosliza, R.; Wan Nik, W.B.; Senin, H.B. The Effect of Inhibitor on the Corrosion of Aluminum Alloys in Acidic Solutions. Mater. Chem. Phys. 2008, 107, 281–288. [Google Scholar] [CrossRef]
- Kahyarian, A.; Schumaker, A.; Brown, B.; Nesic, S. Acidic Corrosion of Mild Steel in the Presence of Acetic Acid: Mechanism and Prediction. Electrochim. Acta 2017, 258, 639–652. [Google Scholar] [CrossRef]
- MacInnes, D.A.; Shedlovsky, T. The Determination of the Ionization Constant of Acetic Acid at 25 °C from Conductance Measurements. J. Am. Chem. Soc. 1932, 54, 1429–1438. [Google Scholar] [CrossRef]
- Deltombe, E.; Pourbaix, M. The Electrochemical Behavior of Aluminum—Potential PH Diagram of the System AI-H2O at 25 C. Corrosion 1958, 14, 16–20. [Google Scholar] [CrossRef]
- Electrochemical Behaviors and Passive Film Properties of Fe-Based Bulk Metallic Glass in Cl−-Containing Acetic Acid Solutions under High Temperature. J. Alloys Compd. 2018, 766, 964–972. [CrossRef]
- Zhang, P.; Zhang, H.; Xu, Y.; Li, H.; Liu, J.; Fan, Y.; Wang, S. Corrosion Behavior of Aluminum in Dilute Acetic Acid Solution Simulating Cooling Water in HVDC Transmission. Int. J. Electrochem. Sci. 2022, 17, 220324. [Google Scholar] [CrossRef]
- Yu, H.; Lv, C.; Yan, C.; Yu, G. Interface Engineering for Aqueous Aluminum Metal Batteries: Current Progresses and Future Prospects. Small Methods 2024, 8, e2300758. [Google Scholar] [CrossRef]
- Macanás, J.; Soler, L.; Candela, A.M.; Muñoz, M.; Casado, J. Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process. Energy 2011, 36, 2493–2501. [Google Scholar] [CrossRef]









| Concentration [wt.%] | Ecorr (VSCE) | icorr (µA cm−2) |
|---|---|---|
| 0 | −0.65 | 11.32 |
| 1 | −0.75 | 16.00 |
| 3.5 | −0.91 | 32.76 |
| 5 | −0.99 | 40.21 |
| 10 | −0.94 | 43.16 |
| Concentration [µL L−1] | pH | Ecorr [VSCE] | Epit [VSCE] | ∆E [VSCE] | icorr [µA cm−2] |
|---|---|---|---|---|---|
| 0 | 5.75 | −1.10 | −0.82 | 0.28 | 4.64 |
| 10 | 3.78 | −1.06 | −0.82 | 0.24 | 11.21 |
| 100 | 3.49 | −1.05 | −0.85 | 0.20 | 16.10 |
| 300 | 3.00 | −1.05 | −0.85 | 0.20 | 17.08 |
| 1000 | 2.47 | −0.99 | −0.84 | 0.15 | 21.55 |
| 2000 | 1.15 | −0.95 | −0.84 | 0.11 | 26.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ha, O.-Y.; Sung, J.; Han, Y.; Park, J.; Oh, S. Effects of Cl− and Acetic Acid Contents on the Corrosion Behavior of Al in SWAAT Environment. Metals 2026, 16, 22. https://doi.org/10.3390/met16010022
Ha O-Y, Sung J, Han Y, Park J, Oh S. Effects of Cl− and Acetic Acid Contents on the Corrosion Behavior of Al in SWAAT Environment. Metals. 2026; 16(1):22. https://doi.org/10.3390/met16010022
Chicago/Turabian StyleHa, On-Yu, JunMo Sung, YeWon Han, JinMan Park, and SeKwon Oh. 2026. "Effects of Cl− and Acetic Acid Contents on the Corrosion Behavior of Al in SWAAT Environment" Metals 16, no. 1: 22. https://doi.org/10.3390/met16010022
APA StyleHa, O.-Y., Sung, J., Han, Y., Park, J., & Oh, S. (2026). Effects of Cl− and Acetic Acid Contents on the Corrosion Behavior of Al in SWAAT Environment. Metals, 16(1), 22. https://doi.org/10.3390/met16010022

