Optimization of Welding Sequence for Frame Structures Based on Discrete Particle Swarm Optimization to Mitigate Welding Deformation
Abstract
1. Introduction
2. Welding Sequence Optimization Process
3. Experimental Procedure and Finite Element Modeling
3.1. Experimental Procedure
3.2. Finite Element Modeling
3.2.1. Local Model Thermal Analysis
3.2.2. Local Model Mechanical Analysis
3.2.3. Global Model Calculation
3.2.4. Validation of the FEM Model
4. Discrete Particle Swarm Optimization-Based Welding Sequence Optimization
4.1. Principle of Discrete Particle Swarm Optimization (DPSO)
4.2. Formulation of the Optimization Mode
4.3. Surrogate Model Construction
4.4. Optimization of the Frame Welding Scheme
5. Conclusions
- (1)
- A local–global welding simulation strategy was successfully established, in which detailed thermo-elastic–plastic analyses were performed only for representative local welded joints, while the overall frame deformation was predicted through an elastic global model by introducing residual plastic strains as initial strains. This approach significantly reduced computational cost while maintaining sufficient accuracy for large-scale welded structures.
- (2)
- The proposed finite element model demonstrated good agreement with experimental measurements. The predicted welding deformation of the frame showed an average deviation of only 5.6% compared with experimental results, confirming the reliability of the local–global mapping method for predicting welding-induced distortion in large engineering vehicle frames.
- (3)
- By integrating the local–global welding simulation with an improved DPSO algorithm, an efficient welding sequence optimization strategy was established. The optimized welding scheme effectively minimized residual deformation without modifying welding parameters such as current, voltage, or speed, making it highly practical for industrial applications.
- (4)
- Compared with the original welding sequence, the optimized scheme reduced the maximum welding deformation of the frame by approximately 43%. This substantial reduction demonstrates that welding sequence optimization alone can significantly improve structural accuracy and manufacturing quality for large welded frames.
- (5)
- The proposed framework avoids repeated global thermo-mechanical simulations during optimization and is therefore particularly well suited for problems involving extremely large solution spaces, such as welding sequence and direction optimization in complex welded structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Z.Y.; Wu, L.L.; Zhang, S.; Shi, Y.H.; Maimaiti, M. Effect of flipping and gravity on angular distortion evolution and control strategies in thick plate welding: Insights from experimental findings. J. Braz. Soc. Mech. Sci. Eng. 2025, 47, 269. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, N.; Huang, W.; Shi, G.; Xiao, H.; Huang, L.; Liu, X. Evolution Characteristics of Aluminum Thermal Weld Irregularity and Damage in Heavy-Haul Railway under Different Service Conditions. Metals 2024, 14, 951. [Google Scholar] [CrossRef]
- Wang, J.C.; Ma, N.; Deng, D. Progress in welding distortion prediction and control technology for advanced manufacturing. J. Manuf. Process. 2025, 152, 1012–1036. [Google Scholar] [CrossRef]
- Jiang, W.; Yahiaoui, K. Effect of welding sequence on residual stress distribution in a multipass welded piping branch junction. Int. J. Press. Vessel. Pip. 2012, 95, 39–47. [Google Scholar] [CrossRef]
- Deshpande, A.A.; Tanner, D.W.J.; Sun, W.; Hyde, T.H.; McCartney, G. Combined butt joint welding and post weld heat treatment simulation using SYSWELD and ABAQUS. Proc. Inst. Mech. Eng. Part L-J. Mater. Des. Appl. 2011, 225, 1–10. [Google Scholar] [CrossRef]
- Manurung, Y.H.P.; Lidam, R.N.; Rahim, M.R.; Zakaria, M.Y.; Redza, M.R.; Sulaiman, M.S.; Tham, G.; Abas, S.K. Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment. Int. J. Press. Vessel. Pip. 2013, 111, 89–98. [Google Scholar] [CrossRef]
- Heinze, C.; Schwenk, C.; Rethmeier, M. Influences of mesh density and transformation behavior on the result quality of numerical calculation of welding induced distortion. Simul. Model. Pract. Theory 2011, 19, 1847–1859. [Google Scholar] [CrossRef]
- Ueda, Y.H.; Murakawa, S.; Gu, Y.O. Simulation of Welding Deformation for Accurate Ship Assembling (1st Repost) In-plane Deformation of Butt Welded Plate. J. Soc. Nav. Archit. Jpn. 1992, 1992, 395–404. [Google Scholar] [CrossRef]
- Woo, D.; Kitamura, M.; Takezawa, A. Method to systemically order welding sequence to efficiently mitigate welding displacement of a general ship grillage structure. Ships Offshore Struct. 2020, 15, 753–768. [Google Scholar] [CrossRef]
- Deng, D.; Murakawa, H.; Liang, W. Numerical simulation of welding distortion in large structures. Comput. Methods Appl. Mech. Eng. 2007, 196, 4613–4627. [Google Scholar] [CrossRef]
- Zhu, J.C.; Khurshid, M.; Barsoum, I.; Barsoum, Z. Computational weld-mechanics assessment of welding distortions in a large beam structure. Eng. Struct. 2021, 236, 112055. [Google Scholar] [CrossRef]
- Zhu, J.; Khurshid, M.; Barsoum, Z. Accuracy of computational welding mechanics methods for estimation of angular distortion and residual stresses. Weld. World 2019, 63, 1391–1405. [Google Scholar] [CrossRef]
- Abid, M.; Siddique, M. Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint. Int. J. Press. Vessel. Pip. 2005, 82, 860–871. [Google Scholar] [CrossRef]
- Deng, D.; Murakawa, H. Prediction of welding distortion and residual stress in a thin plate butt-welded joint. Comput. Mater. Sci. 2008, 43, 353–365. [Google Scholar] [CrossRef]
- Kohandehghan, A.R.; Serajzadeh, S. Experimental Investigation into the Effects of Weld Sequence and Fixture on Residual Stresses in Arc Welding Process. J. Mater. Eng. Perform. 2012, 21, 892–899. [Google Scholar] [CrossRef]
- Bajpai, T.; Nyati, A.K.; Sharma, P.; Gupta, P.K. Numerical and Experimental Investigation on Effects of Welding Sequence on Distortions in Fillet-Welded AA6061-T6 Joints. J. Mater. Eng. Perform. 2023, 33, 10980–10994. [Google Scholar] [CrossRef]
- Gilles, P.; El-Ahmar, W.; Jullien, J.F. Robustness analyses of numerical simulation of fusion welding NeT-TG1 application: “Single weld-bead-on-plate”. Int. J. Press. Vessel. Pip. 2009, 86, 3–12. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, J.M.; Cao, S.F.; Guo, P.C. Effect of welding sequence on residual stress and deformation of 6061-T6 aluminium alloy automobile component. Trans. Nonferrous Met. Soc. China 2019, 29, 287–295. [Google Scholar] [CrossRef]
- Azad, N.; Iranmanesh, M.; Darvazi, A.R. A study on the effect of welding sequence on welding distortion in ship deck structure. Ships Offshore Struct. 2020, 15, 355–367. [Google Scholar] [CrossRef]
- Bruno, S.; Frédéric, B.; Bergheau, J.-M. A new local global approach for the modelling of welded steel component distortions. In Mathematical Modelling of Weld Phenomena; Cerjak, P.H., Ed.; Maney Publishing: London, UK, 2002; Volume 6, pp. 997–1013. [Google Scholar]
- Perić, M.; Tonković, Z.; Maksimović, K.S.; Stamenković, D. Numerical analysis of residual stresses in a T-Joint fillet weld using a submodeling technique. FME Trans. 2019, 47, 183–189. [Google Scholar] [CrossRef]
- Tsirkas, S.A.; Papanikos, P.; Pericleous, K.; Strusevich, N.; Boitout, F.; Bergheau, J.M. Evaluation of distortions in laser welded shipbuilding parts using local-global finite element approach. Sci. Technol. Weld. Join. 2003, 8, 79–88. [Google Scholar] [CrossRef]
- Duan, Y.G.; Vincent, Y.; Boitout, F.; Leblond, J.B.; Bergheau, J.M. Prediction of welding residual distortions of large structures using a local/global approach. J. Mech. Sci. Technol. 2007, 21, 1700–1707. [Google Scholar] [CrossRef]
- Rong, Y.M.; Chang, Y.; Xu, J.J.; Huang, Y.; Lei, T.; Wang, C.M. Numerical analysis of welding deformation and residual stress in marine propeller nozzle with hybrid laser-arc girth welds. Int. J. Press. Vessel. Pip. 2017, 158, 51–58. [Google Scholar] [CrossRef]
- Jang, H.-L.; Ryu, H.; Kang, S. A Study on the Effects of Welding Deformation According to Weld Sequence in Overlay-Welded Structures. Metals 2024, 14, 684. [Google Scholar] [CrossRef]
- Islam, M.; Buijk, A.; Rais-Rohani, M.; Motoyama, K. Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures. Finite Elem. Anal. Des. 2014, 84, 54–64. [Google Scholar] [CrossRef]
- Choi, M.; Wu, C.B.; Kim, J.W. Numerical Optimization of the Welding Sequence for Mitigating Welding Deformation in Aluminum Pipe Structures by Using a Genetic Algorithm. Int. J. Precis. Eng. Manuf. 2020, 21, 2323–2333. [Google Scholar] [CrossRef]
- Yuan, M.X.; Liu, S.D.; Gao, Y.Q.; Sun, H.W.; Liu, C.; Shen, Y. Immune Optimization of Welding Sequence for Arc Weld Seams in Ship Medium-Small Assemblies. Coatings 2022, 12, 703. [Google Scholar] [CrossRef]
- Wu, C.B.; Wang, C.; Kim, J.W. Welding sequence optimization to reduce welding distortion based on coupled artificial neural network and swarm intelligence algorithm. Eng. Appl. Artif. Intell. 2022, 114, T0797A. [Google Scholar] [CrossRef]
- Wang, X.W.; Min, Y.; Gu, X.S. Multi-objective path optimization for arc welding robot based on discrete DN multi-objective particle swarm optimization. Int. J. Adv. Robot. Syst. 2019, 16, 172988141987982. [Google Scholar]
- Gavrilovic, N.; Sibalija, T.; Domazet, D. Design and implementation of discrete Jaya and discrete PSO algorithms for automatic collaborative learning group composition in an e-learning system. Appl. Soft Comput. 2022, 129, 109611. [Google Scholar] [CrossRef]
- Wang, L.; Miao, Y.; Hu, G.; Zhao, Y.; Deng, Q. Numerical Simulations and Experimental Verification of T-Structure Welding Deformation Using the Step-by-Step Loading Inherent Strain Method. Metals 2023, 13, 1312. [Google Scholar] [CrossRef]
- Han, Q.; Kim, D.; Kim, D.; Lee, H.; Kim, N. Laser pulsed welding in thin sheets of Zircaloy-4. J. Mater. Process. Technol. 2012, 212, 1116–1122. [Google Scholar] [CrossRef]
- Peric, M.; Seles, K.; Tonkovic, Z.; Lovrenic-Jugovic, M. Numerical simulation of welding distortions in large structures with a simplified engineering approach. Open Phys. 2019, 17, 719–730. [Google Scholar] [CrossRef]
- Chang, Z.P.; Wang, Z.Q.; Xie, L.L.; Kang, Y.G.; Xu, M.H.; Wang, Z.M. Prediction of riveting deformation for thin-walled structures using local-global finite element approach. Int. J. Adv. Manuf. Technol. 2018, 97, 2529–2544. [Google Scholar] [CrossRef]
- Erden, C.; Demir, H.I.; Canpolat, O. A modified integer and categorical PSO algorithm for solving integrated process planning, dynamic scheduling, and due date assignment problem. Sci. Iran. 2023, 30, 738–756. [Google Scholar] [CrossRef]
- Shao, Q.; Xu, T.; Yoshino, T.; Song, N.; Yu, Z.L. Optimization of the welding sequence and direction for the side beam of a bogie frame based on the discrete particle swarm algorithm. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2018, 232, 1423–1435. [Google Scholar] [CrossRef]
- Ma, X.Y.; Sun, Z.L.; Cui, P.; Wu, J.W. Optimization of the welding process parameters of Mg-5Gd-3Y magnesium alloy plates with a hybrid Kriging and particle swarm optimization algorithm. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 2018, 232, 4038–4048. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Chen, J. Adaptive path planning method for UAVs in complex environments. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103133. [Google Scholar] [CrossRef]















| Welded Joint | Size (mm × mm) | Welding (Leg Height) (mm) | Current (A) | Voltage (V) | Speed (mm/s) |
|---|---|---|---|---|---|
| Local Model A | 25 × 25 | 8 | 200 | 30 | 5 |
| Local Model B | 40 × 25 | 8 | 230 | 30 | 5 |
| Local Model C | 25 × 6 | 6 | 180 | 28 | 7 |
| Local Model D | 42 × 25 | 10 | 250 | 30 | 5 |
| Welded Joint | Qf W/m3 | Qr W/m3 | af mm | ar mm | b mm | c mm |
|---|---|---|---|---|---|---|
| Local Model A | 22.96 | 19.14 | 3 | 4 | 5 | 6 |
| Local Model B | 22.9 | 19.69 | 3 | 4 | 4 | 6 |
| Local Model C | 32.55 | 27.12 | 3 | 4 | 3.5 | 4 |
| Local Model D | 16.3 | 13.66 | 3 | 4 | 5 | 7 |
| Step | Welding Sequence |
|---|---|
| 1 | WL1—WL9—WL2—WL10—WL5—WL6—WL11—WL12—WL7—WL3—WL08—WL4 |
| 2 | WL01—WL09—WL02—WL010—WL06—WL011—WL012—WL07—WL8—WL03—WL06—WL04 |
| Coded Value | Actual Value | ||||
|---|---|---|---|---|---|
| A | D1 | B | C | D3 | |
| I | 1234 | 0000 | 5678 | 9101112 | 0000 |
| II | 3241 | 0110 | 5867 | 1091112 | 0010 |
| III | 4132 | 1001 | 5768 | 9111012 | 1001 |
| IV | 4231 | 1011 | 5876 | 9121110 | 1110 |
| No. | Actual Value | Total Welding Deformation (mm) | ||||
|---|---|---|---|---|---|---|
| A | D1 | B | C | D3 | ||
| 1 | I (0000) | I (5678) | I (9101112) | I (0000) | I (0000) | 2.83 |
| 2 | II (0110) | II (5867) | II (1091112) | II (0010) | II (0110) | 2.82 |
| 3 | III (1001) | III (5768) | III (9111012) | II (0010) | III (1001) | 2.75 |
| 4 | IV (1011) | IV (5876) | IV (9121110) | IV (1110) | IV (1011) | 2.63 |
| 5 | I (0000) | II (5867) | III (9111012) | IV (1110) | I (0000) | 2.58 |
| 6 | I (0000) | II (5867) | IV (9121110) | III (1001) | I (0000) | 2.46 |
| 7 | III (1001) | IV (5876) | II (1091112) | II (0010) | III (1001) | 2.68 |
| 8 | IV (1011) | III (5768) | II (1091112) | I (0000) | IV (1011) | 2.91 |
| 9 | I (0000) | III (5768) | IV (9121110) | II (1001) | I (0000) | 2.36 |
| 10 | II (0110) | IV (5876) | III (9111012) | I (0000) | II (0110) | 2.87 |
| 11 | III (1001) | I (5678) | II (1091112) | IV (1110) | III (1001) | 2.76 |
| 12 | IV (1011) | II (5867) | I (9101112) | III (1001) | IV (1011) | 2.58 |
| 13 | I (0000) | IV (5876) | II (1091112) | III (1001) | I (0000) | 2.67 |
| 14 | II (0110) | III (5768) | I (9101112) | IV (1110) | II (0110) | 2.25 |
| 15 | III (1001) | II (5867) | IV (9121110) | I (0000) | III (1001) | 2.49 |
| 16 | IV (1011) | I (5678) | III (9111012) | II (1001) | IV (1011) | 2.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, J.; Hou, Q.; Ding, F.; Shao, J. Optimization of Welding Sequence for Frame Structures Based on Discrete Particle Swarm Optimization to Mitigate Welding Deformation. Metals 2026, 16, 23. https://doi.org/10.3390/met16010023
Liu J, Hou Q, Ding F, Shao J. Optimization of Welding Sequence for Frame Structures Based on Discrete Particle Swarm Optimization to Mitigate Welding Deformation. Metals. 2026; 16(1):23. https://doi.org/10.3390/met16010023
Chicago/Turabian StyleLiu, Jigang, Quanhui Hou, Fusheng Ding, and Jun Shao. 2026. "Optimization of Welding Sequence for Frame Structures Based on Discrete Particle Swarm Optimization to Mitigate Welding Deformation" Metals 16, no. 1: 23. https://doi.org/10.3390/met16010023
APA StyleLiu, J., Hou, Q., Ding, F., & Shao, J. (2026). Optimization of Welding Sequence for Frame Structures Based on Discrete Particle Swarm Optimization to Mitigate Welding Deformation. Metals, 16(1), 23. https://doi.org/10.3390/met16010023

