From √A to Elliptical Defects: Refining Murakami’s Model for Fatigue Prediction in Sintered Steels
Abstract
1. Introduction
2. Theoretical Framework
2.1. Fatigue Crack Initiation from Pores: LEFM Approach
2.2. Murakami’s Approach
2.3. Extreme Value Statistics for Maximum Pore Size Estimation
2.4. Alternative Geometrical Descriptors of Pore Morphology
3. Materials and Methods
3.1. Materials and Specimen Extraction
3.2. Microstructural and Basic Characterisation
3.3. Porosity Analysis
3.3.1. Image Acquisition and Segmentation
3.3.2. Geometrical Descriptors
3.3.3. Extreme Value Statistics
3.4. Tensile Testing
3.5. Fatigue Testing
3.5.1. Specimen Geometry and Preparation
3.5.2. Fatigue Test Procedure
3.5.3. Fractographic Analysis
4. Results
4.1. Microstructure, Density, and Static Mechanical Properties
4.2. Extreme Value Statistics of Porosity
4.3. S–N Curves and Fatigue Limits
5. Discussion
5.1. Influence of Powder Composition, Processing Route and Density on Fatigue Performance
5.2. Interpretation of Porosity Through Extreme Value Statistics
5.3. Applicability and Limitations of Murakami’s Model
5.4. Improved Fatigue Prediction Using Elongation-Based Defect Descriptors
6. Conclusions
- Specimens extracted directly from real synchronizer hubs accurately replicate component fatigue behaviour, validating their representativeness for analysis.
- Although SH1 exhibits higher hardness (356 HV30) and tensile strength (714 MPa), its greater porosity (Aα_50% = 3430 µm2) results in the lowest fatigue resistance (Sf = 232 MPa), confirming porosity as the dominant controlling factor.
- Murakami’s √A model remains reliable only when pores are compact and equiaxed. Its accuracy deteriorates significantly with elongated or interconnected pores.
- Defining defect size through the major axis of the ellipse enclosing the pore (a = dmax) improves fatigue limit prediction accuracy from 49% to under 6% for all materials.
- The proposed elliptical-defect framework offers a robust, transferable method for defect-sensitive fatigue assessment in porous and additively manufactured metallic materials.
- This refined geometrical approach enhances the reliability of fatigue design for real powder-metallurgy components, supporting defect-informed durability assessment in industrial applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| A = Ai | Average area of maximum pore sizes |
| dmax | Maximum pore length after adjustment with ellipses |
| PM | Powder metallurgy |
| LEFM | Linear Elastic Fracture Mechanics |
| ∆Kth | Threshold stress intensity factor range |
| a | Defect size |
| ML | Machine Learning |
| FD | Feret Diameter |
| AR | Aspect Ratio |
| dmin | Minimum pore length after adjustment with ellipses |
| EVS | Extreme Value Statistics |
| SH1 | Synchronizer hub 1 |
| SH2 | Synchronizer hub 2 |
| PP2 | Parallelepiped block |
| Sf | Fatigue limit |
| Y(a/W) | Geometric factor for the calculation of the threshold stress intensity factor amplitude |
| HV | Vickers hardness |
| β | Parameter used for calculating the fatigue limit when considering the average maximum pore size and the Vickers hardness of the material |
| F0 | Two-parameter Gumbel distribution |
| λ | Location parameter of the Gumbel distribution |
| δ | Scale parameter of the Gumbel distribution |
| V0 | Volume of material used in the calculation of the parameters λ and δ |
| V | Volume of the analysed element (shaft of the rotating–bending fatigue specimen) |
| F(x) | Distribution function of the largest pores in each volume |
| α | Probability of failure |
| ID | Material identification |
| Ra | Surface roughness |
| R | Stress ratio |
| E | Elastic modulus |
| ν | Poisson’s ratio |
| σys | Yield strength |
| σut | Tensile strength |
| εu | Strain at failure |
| ρ | Density of the materials |
| Aα | Average area of maximum pore size for a certain probability |
| σ’f | Basquin law coefficient |
| b | Basquin law exponent |
| Sa | Applied stress |
| N | Number of cycles |
References
- Lawcock, R.; Buckley-Golder, K.; Sarafinchan, D. Testing of High Endurance PM Steels for Automotive Transmission Gearing Component; SAE Technical Paper 1999-01-0293; Stackpole Ltd.: Ancaster, ON, Canada, 1999. [Google Scholar]
- Fang, Z.Z. (Ed.) Sintering of Advanced Materials; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Danninger, H.; de Oro Calderon, R.; Gierl-Mayer, C. Powder Metallurgy and Sintered Materials. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2017; pp. 1–57. [Google Scholar] [CrossRef]
- Kruth, J.; Van der Schueren, B.; Bonse, J.; Morren, B. Basic Powder Metallurgical Aspects in Selective Metal Powder Sintering. CIRP Ann. 1996, 45, 183–186. [Google Scholar] [CrossRef]
- German, R.M. Powder Metallurgy Science, 2nd ed.; Metal Powder Industries Federation: Princeton, NJ, USA, 1994. [Google Scholar]
- Hadrboletz, A.; Weiss, B. Fatigue behaviour of iron based sintered material: A review. Int. Mater. Rev. 1997, 42, 1–44. [Google Scholar] [CrossRef]
- Sudhakar, K.V. Fatigue behavior of a high density powder metallurgy steel. Int. J. Fatigue 2000, 22, 729–734. [Google Scholar] [CrossRef]
- Samal, P.J.; Newkirk, J. ASM Handbook Powder Metallurgy Vol. 7; ASM International: Almere, The Netherlands, 2015. [Google Scholar]
- Bergmark Höganäs, A.A. Influence of maximum pore size on the fatigue performance of PM steel. Powder Metall. Prog. 2005, 5, 131. [Google Scholar]
- Bris, J.; Calero, J.A.; Llanes, L. Small and long fatigue cracks growth in PM steels. In Proceedings of the 2010 International Conference on Powder Metallurgy, Washington DC, USA, 10 June 2010. [Google Scholar]
- Danninger, H.; Leitner, G.; Gierl-Mayer, C. Studying the Progress of Sintering in Ferrous Powder Compacts by In-Situ Measuring the Thermal Conductivity. Powder Metall. Prog. 2018, 18, 80–95. [Google Scholar] [CrossRef]
- Polasik, S.J.; Williams, J.J.; Chawla, N. Fatigue crack initiation and propagation of binder-treated powder metallurgy steels. Met. Mater. Trans. A 2002, 33, 73–81. [Google Scholar] [CrossRef]
- Danninger, H.; Weiss, B.; Betzwar-Kotas, A.; Khatibi, G.; Sohar, C.; Dlapka, M.; Gierl-Mayer, C. Fatigue response and fractography of sintered materials. Powder Metall. Prog. 2015, 15, 218–233. [Google Scholar]
- Ternero, F.; Rosa, L.G.; Urban, P.; Montes, J.M.; Cuevas, F.G. Influence of the total porosity on the properties of sintered materials—A review. Metals 2021, 11, 730. [Google Scholar] [CrossRef]
- German, R.M.; Queeney, R.A. Queeney, Fatigue and Fracture Control for Powder Metallurgy Components. In Fatigue and Fracture; Volume 19, ASM Handbook, by ASM Handbook Committee; ASM International: Almere, The Netherlands, 1996; pp. 337–344. [Google Scholar] [CrossRef]
- Andersson, M. The influence of notches on fatigue of heat treated sintered steel. In Proceedings of the International Powder Metallurgy Congress and Exhibition, Gothenburg, Sweden, 15–18 September 2013. [Google Scholar]
- Taylor, D. Geometrical effects in fatigue: A unifying theoretical model. Int. J. Fatigue 1999, 21, 413–420. [Google Scholar] [CrossRef]
- Andersson, M.; Ab, H. The Role of Porosity in Fatigue of PM Materials. Powder Metall. Prog. 2011, 11, 21–31. [Google Scholar]
- ASTM E466-21; Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASM International: Almere, The Netherlands, 2021.
- Murakami, Y.; Beretta, S. Small Defects and Inhomogeneities in Fatigue Strength: Experiments, Models and Statistical Implications. Extremes 1999, 2, 123–147. [Google Scholar] [CrossRef]
- Yi, M.; Xue, M.; Cong, P.; Song, Y.; Zhang, H.; Wang, L.; Zhou, L.; Li, Y.; Guo, W. Machine learning for predicting fatigue properties of additively manufactured materials. Chin. J. Aeronaut. 2024, 37, 1–22. [Google Scholar] [CrossRef]
- Papia, E.-M.; Kondi, A.; Constantoudis, V. Machine learning applications in SEM-based pore analysis: A review. Microporous Mesoporous Mater. 2025, 394, 113675. [Google Scholar] [CrossRef]
- Khan, I.; Khanal, A. Machine Learning Assisted Prediction of Porosity and Related Properties Using Digital Rock Images. ACS Omega 2024, 9, 30205–30223. [Google Scholar] [CrossRef] [PubMed]
- Tomić, Z.; Jarak, T.; Lesičar, T.; Gubeljak, N.; Tonković, Z. Modelling of Fatigue Microfracture in Porous Sintered Steel Using a Phase-Field Method. Materials 2023, 16, 4174. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.; Navidtehrani, Y.; Betegón, C.; Martínez-Pañeda, E. Coupled thermo-chemo-mechanical phase field-based modelling of hydrogen-assisted cracking in girth welds. Int. J. Mech. Sci. 2026, 311, 111172. [Google Scholar] [CrossRef]
- Tang, W.; Wang, L.; Sun, S.; Zhou, L.; Yi, M. Macroscopically modeling fatigue life of additively manufactured metals: Pore-defect informed phase-field model. J. Mech. Phys. Solids 2025, 196, 106008. [Google Scholar] [CrossRef]
- Nicodemi, M. Extreme Value Statistics. In Encyclopedia of Complexity and Systems Science; Meyers, R., Ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- de Haan, L. Extreme Value Statistics. In Extreme Value Theory and Applications; Galambos, J., Lechner, J., Simiu, E., Eds.; Springer: Boston, MA, USA, 1994. [Google Scholar] [CrossRef]
- Murakami, Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Gumbel, E.J. Statistics of Extremes, New York Chichester; Columbia University Press: West Sussex, UK, 1958. [Google Scholar] [CrossRef]
- ISO 2738:2000; Sintered Metal Materials, Excluding Hardmetals. Permeable Sintered Metal Materials. Determination of Density, oil Content and Open Porosity. ISO: Geneva, Switzerland, 2000.
- UNE-EN ISO 6892-1; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature (ISO 6892-1:2019) 2020. State Administration for Market Regulation. Standardization Administration of the People’s Republic of China: Beijing, China, 2020.
- ISO 3928:2016; Sintered Metal Materials, Excluding Hardmetals-Fatigue Test Pieces. ISO: Geneva, Switzerland, 2016.
- ISO 1143:2021; Rotating Bar Bending Fatigue Testing. ISO International: Geneva, Switzerland, 2010.
- Zahavi, E. Fatigue Design: Life Expectancy of Machine Parts, 1st ed.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar] [CrossRef]
- Atkinson, R.J. Designing Against Fatigue.R. B. Heywood. Chapman & Hall, London. 1962. 436 pp. Illustrated.84S. J. R. Aeronaut. Soc. 1963, 67, 195-195. [Google Scholar] [CrossRef]
- Otero, S.; Álvarez, G.; Llera, M.; Rodríguez, C. Fatigue characterisation of structural steel by means of the small punch test: Development of a methodology. Theor. Appl. Fract. Mech. 2025, 135, 104772. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, Y.; Huang, X.; Li, S. Fatigue Behavior of Alloy Steels Sintered from Pre-Alloyed and Diffusion-Bonding Alloyed Powders. Metals 2022, 12, 659. [Google Scholar] [CrossRef]
- Engström, U.; Ab, H.; Lipp, S.K. Influence of Notches on Fatigue Strength of High Performance PM Materials. In Proceedings of the International Conference on Powder Metallurgy & Particulate Materials (PM2TEC), New Orleans, LA, USA, 13–17 May 2001. [Google Scholar]
- Dudrová, E.; Kabátová, M. Fractography of sintered steels. Proc. PM World Congr. 2004, 3, 27–32. [Google Scholar]
- Andersson, M.; Larsson, M.; Ab, H. Linking pore size and structure to the fatigue performance of sintered steels. In Proceedings of the PM2010 World Congress, Florence, Italy, 13 October 2010. [Google Scholar]
- Peng, D.; Champagne, V.K.; Ang, A.S.M.; Birt, A.; Michelson, A.; Pinches, S.; Jones, R. Computing the Durability of WAAM 18Ni-250 Maraging Steel Specimens with Surface Breaking Porosity. Crystals 2023, 13, 443. [Google Scholar] [CrossRef]
- ASTM E647; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 1978.
- BS 7910:2019; Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures. British Standards Institution: London, UK, 2019.
- Murakami, Y.; Endo, M. Effects of hardness and crack geometry on delta Kth of small cracks. J. Soc. Mater. Sci. JPN 1986, 35, 911–917. [Google Scholar] [CrossRef]









| ID | Cr | Mo | C | Cu | Ni | Fe |
|---|---|---|---|---|---|---|
| SH1 | 3.0 | 0.5 | 0.4 | - | - | Bal. |
| SH2, PP2 | - | 0.5 | 0.6 | 1.5 | 4.0 | Bal. |
| ID | E (MPa) | ν | σys (MPa) | σut (MPa) | εu (%) | HV30 | ρ (g/cm3) |
|---|---|---|---|---|---|---|---|
| SH1 | 130,500 | 0.26 | 714 | 714 | 0.65 | 356 ± 13 | 6.6205 |
| SH2 | 125,000 | 0.26 | 548 | 622 | 0.87 | 268 ± 14 | 6.8126 |
| PP2 | 140,000 | 0.27 | 595 | 795 | 1.5 | 307 ± 19 | 7.0885 |
| ID | δ (µm2) | λ (µm2) | Aα_50% (µm2) | (MPa √m) |
|---|---|---|---|---|
| SH1 | 231 | 450 | 3430 | 6.10 |
| SH2 | 154 | 524 | 2281 | 4.65 |
| PP2 | 192 | 335 | 2843 | 5.30 |
| ID | FDα_50% (µm) | dmax α_50% (µm) | dmin α_50% (µm) | ARα_50% |
|---|---|---|---|---|
| SH1 | 0.2309 | 0.1677 | 0.0130 | 12.88 |
| SH2 | 0.1587 | 0.1189 | 0.0122 | 9.74 |
| PP2 | 0.1808 | 0.1331 | 0.0136 | 9.79 |
| ID | (MPa) | b | (MPa) |
|---|---|---|---|
| SH1 | 843 | −0.094 | 232 ± 2 |
| SH2 | 770 | −0.086 | 270 ± 4 |
| PP2 | 829 | −0.083 | 291 ± 4 |
| ID | (MPa) | (%) |
|---|---|---|
| SH1 (a = | 345.41 | +48.9 |
| SH2 (a = | 291.29 | +7.9 |
| PP2 (a = | 314.74 | +8.2 |
| ID | (MPa) | (%) | (MPa) | (%) |
|---|---|---|---|---|
| (a = FD) | (a = dmax) | |||
| SH1 | 209.73 | −9.6 | 246.05 | +6.06 |
| SH2 | 233.78 | −14.05 | 270.06 | −0.02 |
| PP2 | 250.06 | −14.07 | 291.17 | −0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Otero, S.; Álvarez, G.; Sicre, J.; Soto, C.; Rodríguez, C. From √A to Elliptical Defects: Refining Murakami’s Model for Fatigue Prediction in Sintered Steels. Metals 2026, 16, 100. https://doi.org/10.3390/met16010100
Otero S, Álvarez G, Sicre J, Soto C, Rodríguez C. From √A to Elliptical Defects: Refining Murakami’s Model for Fatigue Prediction in Sintered Steels. Metals. 2026; 16(1):100. https://doi.org/10.3390/met16010100
Chicago/Turabian StyleOtero, S., G. Álvarez, J. Sicre, C. Soto, and C. Rodríguez. 2026. "From √A to Elliptical Defects: Refining Murakami’s Model for Fatigue Prediction in Sintered Steels" Metals 16, no. 1: 100. https://doi.org/10.3390/met16010100
APA StyleOtero, S., Álvarez, G., Sicre, J., Soto, C., & Rodríguez, C. (2026). From √A to Elliptical Defects: Refining Murakami’s Model for Fatigue Prediction in Sintered Steels. Metals, 16(1), 100. https://doi.org/10.3390/met16010100

