Hot Deformation Behavior and Processing Maps of Nitrogen-Containing 2Cr13 Corrosion-Resistant Plastic Die Steel
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. True Stress–Strain Curves
3.2. Thermal Activation Energy and Constitutive Equation
3.3. Hot Processing Maps
3.4. Microstructure Evolution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2Cr13N | Nitrogen-Containing 2Cr13 |
DMM | dynamic material model |
KAM | Kernel Average misorientation |
LAGBs | low-angle GB |
DRX | dynamic recovery |
DRV | dynamic recrystallization |
SEM | scanning electron microscope |
References
- Chen, X.W.; Zhou, Z.; Zhang, X.P.; Su, Z.Y.; Li, Z.H.; Si, Y.H. Optimization method of parameters inverse identification for hot deformation constitutive model of 2Cr13 martensitic stainless steel using genetic algorithm. Mater. Today Commun. 2024, 41, 110645. [Google Scholar] [CrossRef]
- Behbahani, K.M.; Zakerin, N.; Najafisayar, P.; Pakshir, M. A survey on the passivity of tempered AISI 420 martensitic stainless steel. Corros. Sci. 2021, 183, 109340. [Google Scholar] [CrossRef]
- Deng, W.W.; Wang, C.Y.; Lu, H.F.; Xu, X.; Luo, K.Y.; Lu, J.Z. Fatigue crack initiation and growth of laser shock peened 2Cr13 martensitic stainless steel as a function of the coverage layer. Int. J. Fatigue 2023, 175, 107792. [Google Scholar] [CrossRef]
- Tsai, M.C.; Chiou, C.S.; Du, J.S.; Yang, J.R. Phase transformation in AISI 410 stainless steel. Mater. Sci. Eng. A 2002, 332, 1–10. [Google Scholar] [CrossRef]
- Sunil, B.K.; Vivekanand, K.; Vishwanadh, B. Effect of tempering treatments on microstructure and intergranular corrosion of 13 wt.% Cr martensitic stainless Steel. Corrosion 2017, 73, 362–378. [Google Scholar] [CrossRef]
- Sunil, B.K.; Vishwanadh, B.; Vivekanand, K. Influence of tempering treatment on microstructure and pitting corrosion of 13 wt.% Cr martensitic stainless steel. Corrosion 2018, 131, 340–354. [Google Scholar] [CrossRef]
- Li, H.F.; Duan, Q.Q.; Zhang, P.; Zhang, Z.F. The Relationship between Strength and Toughness in Tempered Steel: Trade-Off or Invariable? Adv. Eng. Mater. 2019, 21, 1801116. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, J.J.; Liu, H.J.; Wang, Y.J.; Guo, S.W.; Sun, Y.; Liu, Y.N. A high performance martensitic stainless steel containing 1.5 wt.% Si. Mater. Des. 2017, 125, 35–45. [Google Scholar] [CrossRef]
- Little, E.A.; Harries, D.R.; Pickering, F.B.; Keown, S.R. Effects of heat treatment on structure and properties of 12%Cr steels. Met. Technol. 2013, 4, 205–217. [Google Scholar] [CrossRef]
- Prieto, G.; Perez Ipiña, J.E.; Tuckart, W.R. Cryogenic treatments on AISI 420 stainless steel: Microstructure and mechanical properties. Mater. Sci. Eng. A 2014, 605, 236–243. [Google Scholar] [CrossRef]
- Mola, J.; De Cooman, B.C. Quenching and Partitioning (Q&P) Processing of Martensitic Stainless Steels. Mater. Sci. Eng. A 2013, 44, 946–967. [Google Scholar] [CrossRef]
- Marques, M.C.S.; de Moura, A.N.; de Alcântara, C.M.; de Carvalho, F.M.S.B.; Bussoloti, R.; da Silva Labiapari, W.; Vatavuk, J. Microstructure and mechanical properties of a martensitic stainless steel (0.2%C–12%Cr) after quenching and partitioning (Q&P) process. J. Mater. Res. Technol. 2023, 24, 3937–3955. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.C.; Yang, L.; Zhong, G.X. Effect of Ce on inclusions and impact property of 2Cr13 stainless steel. J. Iron. Steel Res. Int. 2010, 17, 59–64. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, Y.L.; Huo, J.H. Mechanism of improvement on strength and toughness of H13 die steel by nitrogen. Mater. Sci. Eng. A 2015, 640, 16–23. [Google Scholar] [CrossRef]
- Gu, J.B.; Liu, H.Q.; Li, J.Y.; Chang, R.J. Effect of nitrogen on microstructure and secondary hardening of H21 die steel. J. Iron Steel Res. Int. 2019, 26, 483–489. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.H.; Xie, J.X. Improving strength and ductility of H13 die steel by pre-tempering treatment and its mechanism. Mater. Sci. Eng. A 2019, 752, 101–114. [Google Scholar] [CrossRef]
- Jiao, W.C.; Li, H.B.; Dai, J.; Feng, H.; Jiang, Z.H.; Zhang, T.; Xu, D.K.; Zhu, H.C.; Zhang, S.C. Effect of partial replacement of carbon by nitrogen on intergranular corrosion behavior of high nitrogen martensitic stainless steels. J. Mater. Sci. Technol. 2019, 35, 2357–2364. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, D.S.; Chi, H.X.; Zhou, J.; Xie, G.L. Effect of Quenching and Tempering Process on Microstructure and Mechanical Properties of N-Mo Alloyed Cr13 Type Corrosion Resistant Plastic Die Steel. Mater. Mech. Eng. 2024, 48, 8–14. [Google Scholar] [CrossRef]
- Yang, L.Y.; Liu, W.; Lu, M.X. Effect of element nitrogen on the microstructure and electrochemical behavior of CO2 corrosion scale of 2Cr13 stainless steels. Acta Metall. Sin. 2006, 42, 1279–1284. [Google Scholar]
- Wang, Y.S.; Liu, X.W.; Fan, S.; Dong, X.P.; Wei, Q.S.; Zheng, K.K.; Xiang, H.L. Effect of heat treatment on microstructure and tensile property of 420 martensitic stainless steel produced by binder jetting additive manufacturing. Mater. Lett. 2024, 354, 135429. [Google Scholar] [CrossRef]
- Krishna, S.C.; Anoop, S.; Koundinya, N.; Karthick, N.K.; Muneshwar, P.; Pant, B. Constitutive Modelling of Hot Deformation Behaviour of Nitrogen Alloyed Martensitic Stainless Steel. Trans. Indian Natl. Acad. Eng. 2020, 5, 769–777. [Google Scholar] [CrossRef]
- GB/T 11170-2008; Stainless Steel—Determination of Multi-Element Contents—Spark Discharge Atomic Emission Spectrometric Method (Routine Method). SAC: Beijing, China, 2008.
- GB/T 20124-2006; Steel and Iron—Determination of Nitrogen Content—Thermal Conductimetric Method After Fusion in a Current of Inert Gas (Routine Method). SAC: Beijing, China, 2006.
- ASTM E209-18; Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates. ASTM: West Conshohocken, PA, USA, 2018. Available online: https://store.astm.org/e0209-18.html (accessed on 5 August 2025).
- ISO 24173:2024; Microbeam Analysis—Guidelines for Orientation Measurement Using Electron Backscatter Diffraction. ISO: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/82749.html (accessed on 5 August 2025).
- GB/T 13298-2015; Inspection Methods of Microstructure for Metals. SAC: Beijing, China, 2015. Available online: https://www.codeofchina.com/standard/GBT13298-2015.html (accessed on 5 August 2025).
- Zhou, P.W.; Song, Y.R.; Jiang, H.W.; Wu, Y.C.; Zong, Y.Y. Hot deformation behavior and processing maps of BG801 bearing steel. J. Mater. Res. Technol. 2022, 18, 3725–3738. [Google Scholar] [CrossRef]
- Wan, P.; Zou, H.; Wang, K.L.; Zhao, Z.Z. Hot deformation characterization of Ti-Nb alloy based on GA-LSSVM and 3D processing map. J. Mater. Res. Technol. 2021, 13, 1083–1097. [Google Scholar] [CrossRef]
- Nayan, N.; Singh, G.; Souza, P.M.; Narayana, M.S.; Venkatesh, M.; Shivram, B.; Narayanan, P.R.; Mohan, M.; Jha, S.K. Hot workability and microstructure control in Monel® 400 (Ni-30Cu) alloy: An approach using processing map, constitutive equation and deformation modeling. Mater. Sci. Eng. A 2021, 825, 141855. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Zeng, W.D.; Feng, F.; Sun, Y.; Han, Y.F.; Zhou, Y.G. Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map. Mater. Sci. Eng. A 2011, 528, 1757–1763. [Google Scholar] [CrossRef]
- Zhang, J.B.; Wu, C.J.; Peng, Y.Y.; Xia, X.C.; Li, J.G.; Ding, J.; Liu, C.; Chen, X.G.; Dong, J.; Liu, Y.C. Hot compression deformation behavior and processing maps of ATI 718Plus superalloy. J. Alloys Compd. 2020, 835, 155195. [Google Scholar] [CrossRef]
- Ren, F.C.; Chen, F.; Chen, J.; Tang, X.Y. Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel. J. Manuf. Processes. 2018, 31, 640–649. [Google Scholar] [CrossRef]
- Prasad, Y.; Gegel, H.; Doraivelu, S.M.; Malas, J.C.; Morgan, J.T.; Lark, K.A.; Barker, D.R. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 1984, 15, 1883–1892. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Wang, Y.; Yan, B.Y.; Zhang, Y.Q. Hot workability of FeMnSiCrNi shape memory alloy based on processing map and martensitic transformation. J. Alloys Compd. 2019, 806, 1153–1165. [Google Scholar] [CrossRef]
- Wu, Y.T.; Liu, Y.C.; Li, C.; Xia, X.C.; Huang, Y.; Li, H.J.; Wang, H.P. Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression. J. Alloys Compd. 2017, 712, 687–695. [Google Scholar] [CrossRef]
- Li, X.; Hou, L.F.; Wei, Y.H.; Wei, Z.Y. Constitutive Equation and Hot Processing Map of a Nitrogen-Bearing Martensitic Stainless Steel. Metals 2020, 10, 1502. [Google Scholar] [CrossRef]
- Di, Y.N.; Fu, B.; Ma, D.S.; Yao, Y.D.; Wu, P.; Zhou, J. Hot deformation characteristics and dynamic recrystallization behavior of Cr5 die casting mold steel. J. Mater. Res. Technol. 2024, 30, 3547–3557. [Google Scholar] [CrossRef]
- Wang, Q.J.; He, Z.; Du, Z.Z.; Wang, Q.R.; Dang, X.; Qi, Z.J. Softening mechanisms and microstructure evolution of 42CrMo steel during hot compressive deformation. J. Mater. Res. Technol. 2023, 23, 5152–5163. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | V | N | Fe |
---|---|---|---|---|---|---|---|---|
0.18 | 0.59 | 0.65 | 0.009 | 0.005 | 13.37 | 0.10 | 0.085 | Bal. |
Strain, ε | /s−1 | Temperature, °C | |||||||
---|---|---|---|---|---|---|---|---|---|
850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | ||
0.2 | 0.01 | 186.6 | 143 | 103 | 83.5 | 70.6 | 57.1 | 47.9 | 39 |
0.1 | 219 | 186 | 146 | 124 | 104 | 84 | 65.7 | 51 | |
1 | 243.6 | 209 | 166 | 151 | 133 | 106 | 90 | 69 | |
5 | 281 | 238 | 202 | 175 | 146.5 | 125 | 110 | 92.2 | |
10 | 299 | 268 | 211 | 183 | 172 | 136 | 115 | 100 | |
0.4 | 0.01 | 198.7 | 156 | 108 | 93.4 | 71 | 55.3 | 45.3 | 34.6 |
0.1 | 237 | 204 | 157.7 | 141 | 113 | 94.6 | 70.6 | 52.4 | |
1 | 266.6 | 226 | 174 | 166 | 146 | 125 | 95 | 70 | |
5 | 307 | 257 | 219 | 189 | 159.8 | 135 | 120 | 100 | |
10 | 323.7 | 288 | 229 | 197 | 187 | 148 | 124 | 108 | |
0.6 | 0.01 | 200 | 157 | 107 | 91.5 | 62.3 | 50 | 44 | 32.3 |
0.1 | 238 | 209 | 159 | 145 | 110 | 91.4 | 66.5 | 48 | |
1 | 273 | 230 | 179 | 164 | 150 | 129 | 91 | 72 | |
5 | 309 | 260 | 223 | 192 | 164 | 139 | 122 | 103 | |
10 | 327.9 | 294 | 235 | 203 | 193 | 154 | 130 | 113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, B.; Cheng, S.; Yang, W. Hot Deformation Behavior and Processing Maps of Nitrogen-Containing 2Cr13 Corrosion-Resistant Plastic Die Steel. Metals 2025, 15, 998. https://doi.org/10.3390/met15090998
Chu B, Cheng S, Yang W. Hot Deformation Behavior and Processing Maps of Nitrogen-Containing 2Cr13 Corrosion-Resistant Plastic Die Steel. Metals. 2025; 15(9):998. https://doi.org/10.3390/met15090998
Chicago/Turabian StyleChu, Baoshuai, Shengwei Cheng, and Wen Yang. 2025. "Hot Deformation Behavior and Processing Maps of Nitrogen-Containing 2Cr13 Corrosion-Resistant Plastic Die Steel" Metals 15, no. 9: 998. https://doi.org/10.3390/met15090998
APA StyleChu, B., Cheng, S., & Yang, W. (2025). Hot Deformation Behavior and Processing Maps of Nitrogen-Containing 2Cr13 Corrosion-Resistant Plastic Die Steel. Metals, 15(9), 998. https://doi.org/10.3390/met15090998