Influence of Overlay Welding Process on the Morphology, Microstructure, and Performance of the Overlay Layer
Abstract
1. Introduction
2. Experimental Details
2.1. Experimental Materials and Equipment
2.2. Characterization
2.2.1. Microstructure Characterization
- Optical microscopy (OM)
- 2.
- Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)
2.2.2. Mechanical Property Testing
2.2.3. Electrochemical Performance Testing
3. Results and Discussion
3.1. Effect of Welding Parameters on the Morphology of the Overlay Layer
3.1.1. Effect of Welding Line Energy
3.1.2. Effect of Weld Bead Overlap Rate
3.2. Effect of Buffer Layer Addition on the Microstructure and Properties of er347 Stainless Steel Overlay Layer
3.2.1. Microstructural Analysis
3.2.2. Chemical Composition Analysis
3.2.3. Mechanical Properties Analysis
3.2.4. Corrosion Resistance Analysis
4. Conclusions
- (1)
- Considering the combined effects of welding heat input and weld overlap ratio, the optimal process parameters were determined through experiments as follows: welding current 240 A, welding voltage 24 ± 2 V, welding speed 40 cm/min, weld bead overlap rate 50%, and shielding gas flow rate 18 L/min. These parameters ensured sound weld bead formation while minimizing the dilution rate to the greatest extent.
- (2)
- Microstructural observation of the overlay layers prepared with the optimized process parameters revealed that the samples with a buffer layer exhibited no obvious welding defects and good interfacial bonding, indicating improved interfacial quality. In contrast, the microstructure of the samples without a buffer layer showed distinct interface delamination. Line scan elemental analysis further confirmed that the addition of the buffer layer effectively mitigated the dilution of Cr and Ni elements from the ER347 overlay layer by the substrate. The elemental distribution between the buffer layer and the overlay layer was uniform, with no abrupt changes, which contributed to improved mechanical properties. In comparison, the samples without a buffer layer exhibited more pronounced elemental gradients.
- (3)
- The addition of a buffer layer improves the localized hardness increase at the interface caused by C element diffusion, resulting in a more uniform hardness gradient. This optimizes the mechanical properties of the ER347 overlay layer and improves the overall structural stability and durability. In contrast, overlay components without a buffer layer experience more drastic changes in hardness in the fusion zone, which is detrimental to the mechanical properties of the components.
- (4)
- After adding the buffer layer, the corrosion current density of the ER347 stainless steel overlay layer decreased from 6.23 × 10−5 A·cm−2 to 2.21 × 10−5 A·cm−2, and the corrosion potential increased from −1.049 V to −0.973 V, indicating that it was more resistant to corrosive media and that its corrosion resistance had improved. Electrochemical testing and equivalent circuit fitting results also show that the overlay layer with a buffer layer has a higher impedance modulus, a larger capacitive arc radius, a denser passivation film, and a lower corrosion rate, indicating that the addition of a buffer layer can effectively improve the corrosion resistance of overlay welding components and reduce the risk of corrosion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balaguru, S.; Gupta, M. Hardfacing studies of Ni alloys: A critical review. J. Mater. Res. Technol. 2021, 10, 1210–1242. [Google Scholar] [CrossRef]
- Suraj, R. Hardfacing and its effect on wear and corrosion performance of various ferrous welded mild steels. Mater. Today Proc. 2021, 42, 842–850. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, D.; Wang, P.; Yan, M.; Yang, C.; Chen, Z.; Lu, J.; Lu, Z. Additive manufacturing of metals: Microstructure evolution and multistage control. J. Mater. Sci. Technol. 2022, 100, 224–236. [Google Scholar] [CrossRef]
- Ning, Y.; Qiu, Z.; Wu, B.; Pan, Z.; Li, H. Hardfacing of metals: A review of consumables, properties and strengthening processes. J. Mater. Res. Technol. 2025, 36, 6330–6349. [Google Scholar] [CrossRef]
- Singla, Y.K.; Maughan, M.R.; Arora, N.; Dwivedi, D.K. Enhancing the wear resistance of iron-based alloys: A comprehensive review of alloying element effects. J. Manuf. Process. 2024, 120, 135–160. [Google Scholar] [CrossRef]
- Luz, F.S.D.; Pinheiro, W.A.; Monteiro, S.N.; Candido, V.S.; Silva, A.C.R.D. Mechanical properties and microstructural characterization of a novel 316L austenitic stainless steel coating on A516 Grade 70 carbon steel weld. J. Mater. Res. Technol. 2020, 9, 636–640. [Google Scholar] [CrossRef]
- Khaghani, A.; Pouranvari, M. Wire-arc directed energy deposition of martensitic stainless steel hardfacing alloy: Microstructure and abrasion wear resistance. J. Mater. Res. Technol. 2025, 34, 1721–1731. [Google Scholar] [CrossRef]
- Bakhshayesh, M.M.; Farzadi, A.; Kalantarian, R.; Zargarzadeh, A. Evaluation of crane wheels restored by hardfacing two distinct 13Cr-4Ni martensitic stainless steels. J. Mater. Res. Technol. 2023, 26, 6067–6083. [Google Scholar] [CrossRef]
- Farzadi, A.; Kalantarian, R. Microstructural development and corrosion behavior of 13Cr–4Ni-1Mo martensitic stainless steel clad. Weld. World 2020, 64, 1811–1823. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Liu, B.X.; He, J.N.; Fang, W.; Zhang, F.Y.; Zhang, X.; Chen, C.X.; Yin, F.X. Microstructure and mechanical properties of SUS304/Q235 multilayer steels fabricated by roll bonding and annealing. Mater. Sci. Eng. A 2019, 740-741, 92–107. [Google Scholar] [CrossRef]
- Hajiannia, I.; Shamanian, M.; Kasiri, M. Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding. Mater. Des. 2013, 50, 566–573. [Google Scholar] [CrossRef]
- Kannan, A.R.; Rajkumar, V.; Prasad, C.D.; Shanmugam, N.S.; Yoon, J. Microstructure and hot corrosion performance of stainless steel 347 produced by wire arc additive manufacturing. Vacuum 2023, 210, 111901. [Google Scholar] [CrossRef]
- Jeong, Y.E.; Shin, G.Y.; Shim, D.S. Effect of P21 buffer layer on interfacial bonding characteristics of high-carbon tool steel hardfaced through directed energy deposition. J. Manuf. Process. 2021, 68, 1596–1614. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Y.; Liu, X.; Xu, G.; Zeng, X.; Wei, K. Single-pass high-power laser-Arc hybrid welding of thick stainless steel clad plates: Microstructure and mechanical properties. J. Mater. Res. Technol. 2024, 30, 5733–5745. [Google Scholar] [CrossRef]
- Bozeman, S.C.; Isgor, O.B.; Tucker, J.D. Effects of processing conditions on the solidification and heat-affected zone of 309L stainless steel claddings on carbon steel using wire-directed energy deposition. Surf. Coat. Technol. 2022, 444, 128698. [Google Scholar] [CrossRef]
- Mohammed, R.; Kumar, E.N.; Ram, G.D.J.; Kamaraj, M.; Reddy, G.M.; Rao, K.S. Microstructure, Mechanical and Corrosion Behavior of Weld Overlay Cladding of DMR 249A steel with AISI 308L. Mater. Today Proc. 2019, 15, 2–10. [Google Scholar] [CrossRef]
- Shamanian, M.; Eghlimi, A.; Eskandarian, M.; Szpunar, J.A. Interface microstructure across cladding of super duplex stainless steel with austenitic stainless steel buffer layer. Surf. Coat. Technol. 2014, 259, 532–542. [Google Scholar] [CrossRef]
- Bhoskar, A.; Naik, H.; Kalyankar, V.; Deshmukh, D. Nickel-based metallurgical coating architectures for superior wear resistance in high-temperature P91 steel applications. J. Alloys Met. Syst. 2025, 9, 100151. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, R.; Yao, J.; Zhang, Q.; Wang, L. Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces. Surf. Coat. Technol. 2017, 329, 97–108. [Google Scholar]
- Balaguru, S.; Abid, M.; Gupta, M. Investigations on different hardfacing processes for High temperature applications of Ni-Cr-B-Si alloy hardfaced on austenitic stainless steel components. J. Mater. Res. Technol. 2020, 9, 10062–10072. [Google Scholar]
- Suthar, F.V.; Shah, H.N.; Mandal, D.; Chaudhury, S.K. Effect of alloy 625 buffer layer on corrosion resistance of nickel base hardfacing. Surf. Coat. Technol. 2024, 485, 130893. [Google Scholar] [CrossRef]
- Thawari, N.; Gullipalli, C.; Katiyar, J.K.; Gupta, T.V.K. Influence of buffer layer on surface and tribomechanical properties of laser cladded Stellite 6. Mater. Sci. Eng. B 2021, 263, 114799. [Google Scholar] [CrossRef]
- Wu, Y.; Schmitt, T.; Bousser, E.; Vernhes, L.; Khelfaoui, F.; Perez, G.; Klemberg-Sapieha, J.E.; Brochu, M. Microstructural and mechanical characterization of Stellite-hardfaced coatings with two types of buffer layers. Surf. Coat. Technol. 2020, 390, 125611. [Google Scholar] [CrossRef]
- Tippayasam, C.; Taengwa, C.; Palomas, J.; Siripongsakul, T.; Thaweechai, T.; Kaewvilai, A. Effects of flux-cored arc welding technology on microstructure and wear resistance of Fe-Cr-C hardfacing alloy. Mater. Today Commun. 2023, 35, 105569. [Google Scholar] [CrossRef]
- Li, X.; Xiong, J.; Ou, W.; Yuan, X.; Zhang, L.; Xu, J.; Yang, J.; Jiao, Y.; Zhang, H.; Chen, Z.; et al. Cracking mechanisms and prevention of Stellite 6# surface layer built by laser cladding during thermal cyclic process. Inter. J. Fatigue 2023, 168, 107439. [Google Scholar]
- Chen, Y.; Xu, Y.; Li, T.; Du, J.; Guo, L.; Hu, K. Fabrication and characterization of self-lubricating anti-wear 316L stainless steel/h-BN composite coatings on Q235 substrate via laser cladding. Opt. Laser Technol. 2025, 180, 111564. [Google Scholar] [CrossRef]
- Li, C.; Qin, G.; Tang, Y.; Zhang, B.; Lin, S.; Geng, P. Microstructures and mechanical properties of stainless steel clad plate joint with diverse filler metals. J. Mater. Res. Technol. 2020, 9, 2522–2534. [Google Scholar] [CrossRef]
- GB/T 4340.1-2009; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. Standards Press of China: Beijing, China, 2009.
- Sun, L.; Jiang, F.; Huang, R.; Yuan, D.; Su, Y.; Guo, C.; Wang, J. Investigation on the process window with liner energy density for single-layer parts fabricated by wire and arc additive manufacturing. J. Manuf. Process. 2020, 56, 898–907. [Google Scholar] [CrossRef]
- Srikarun, B.; Oo, H.Z.; Petchsang, S.; Muangjunburee, P. The effects of dilution and choice of added powder on hardfacing deposited by submerged arc welding. Wear 2019, 424–425, 246–254. [Google Scholar] [CrossRef]
- Tarng, Y.S.; Juang, S.C.; Chang, C.H. The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing. J. Mater. Process. Tech. 2002, 128, 1–6. [Google Scholar] [CrossRef]
- Gejendhiran, S.; Karpagaraj, A.; Manivannan, S.; Shiva, S.; Kannan, T.D.B. Experimental study on mechanical, damping and corrosion properties of Inconel 718 hard-faced stainless steel 304 using cold metal transfer. Eng. Fail. Anal. 2024, 156, 107871. [Google Scholar] [CrossRef]
Elements | C | Mn | P | S | Si | Fe |
---|---|---|---|---|---|---|
content | ≤0.2 | ≤1.4 | ≤0.045 | ≤0.045 | ≤0.35 | Bal. |
Elements | C | Mn | P | S | Si | Cr | Ni | Nb | Fe |
---|---|---|---|---|---|---|---|---|---|
ER309L | 0.038 | 1.34 | 0.020 | 0.007 | 0.40 | 23.83 | 13.25 | --- | Bal. |
ER347 | 0.026 | 1.39 | 0.024 | 0.007 | 0.29 | 19.30 | 9.79 | 0.2 | Bal. |
Specimen Number | Welding Current (A) | Welding Voltage (V) | Welding Speed (cm/min) | Shielding Gas Flow Rate (L/min) | Welding Line Energy (kJ/cm) |
---|---|---|---|---|---|
S-1 | 220 | 22 ± 2 (100%) | 40 | 18 | 6.2 |
S-2 | 240 | 24 ± 2 (100%) | 40 | 18 | 7.3 |
S-3 | 260 | 26 ± 2 (100%) | 40 | 18 | 8.6 |
S-4 | 280 | 28 ± 2 (100%) | 40 | 18 | 9.9 |
Specimen Number | Melt Depth (mm) | Melt Width (mm) | Residual Height (mm) | Dilution Rate (%) |
---|---|---|---|---|
S-1 | 1.9 | 7.6 | 2.7 | 41.7 |
S-2 | 2.0 | 8 | 2.9 | 30.4 |
S-3 | 2.3 | 9.4 | 3.3 | 29.2 |
S-4 | 2.6 | 10.5 | 3.9 | 26.3 |
Specimen Number | Overlap Rate (%) | Melt Depth (mm) | Melt Width (mm) | Residual Height (mm) |
---|---|---|---|---|
S2-1 | 25 | 2.18 | 17.25 | 3.75 |
S2-2 | 50 | 2.43 | 14.49 | 4.12 |
S2-3 | 75 | 2.37 | 11.40 | 4.53 |
Specimen | Ecorr/V | Icorr/A·cm−2 |
---|---|---|
without buffer layer | −1.049 | 6.23 × 10−5 |
with buffer layer | −0.973 | 2.21 × 10−5 |
Specimen | Rs (Ω·cm2) | CPEd1 | Rt (Ω·cm2) | CPEf | Rf (Ω·cm2) | ||
---|---|---|---|---|---|---|---|
Q1 | N1 | Q2 | N2 | ||||
without buffer layer | 6.67 | 4.30 × 10−5 | 0.91 | 2.10 × 104 | 3.27 × 10−5 | 0.60 | 2.17 × 104 |
with buffer layer | 6.76 | 4.31 × 10−5 | 0.91 | 2.92 × 104 | 2.52 × 10−5 | 0.43 | 5.22 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Zhang, J.; Yu, Z.; Li, M.; Cai, Z.; Feng, D.; Ren, S.; Zheng, W.; Yang, J. Influence of Overlay Welding Process on the Morphology, Microstructure, and Performance of the Overlay Layer. Metals 2025, 15, 987. https://doi.org/10.3390/met15090987
Ma Y, Zhang J, Yu Z, Li M, Cai Z, Feng D, Ren S, Zheng W, Yang J. Influence of Overlay Welding Process on the Morphology, Microstructure, and Performance of the Overlay Layer. Metals. 2025; 15(9):987. https://doi.org/10.3390/met15090987
Chicago/Turabian StyleMa, Yinghe, Jinpeng Zhang, Zhen Yu, Min Li, Zhihui Cai, Daochen Feng, Sendong Ren, Wenjian Zheng, and Jianguo Yang. 2025. "Influence of Overlay Welding Process on the Morphology, Microstructure, and Performance of the Overlay Layer" Metals 15, no. 9: 987. https://doi.org/10.3390/met15090987
APA StyleMa, Y., Zhang, J., Yu, Z., Li, M., Cai, Z., Feng, D., Ren, S., Zheng, W., & Yang, J. (2025). Influence of Overlay Welding Process on the Morphology, Microstructure, and Performance of the Overlay Layer. Metals, 15(9), 987. https://doi.org/10.3390/met15090987