A Green Electroslag Technology for Cadmium Recovery from Spent Ni-Cd Batteries Under Protective Flux with Electromagnetic Stirring by Electrovortex Flows
Abstract
1. Introduction
2. Materials and Methods
2.1. Justification of Method of Conducting Experiments
2.2. Sample Preparation and Experimental Parameters
2.3. Sample Extraction and Preparation for Analysis
2.4. Microscopy and XRD Analysis
3. Results
3.1. Morphological Analysis
3.2. SEM and XRD Analysis
3.2.1. Results of the Study of the Bottom Layer
3.2.2. Results of the Middle Layer Study
3.2.3. Results of the Study of the Upper Layer
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bielowicz, B. Waste as a Source of Critical Raw Materials—A New Approach in the Context of Energy Transition. Energies 2025, 18, 2101. [Google Scholar] [CrossRef]
- Blumbergs, E.; Serga, V.; Platacis, E.; Maiorov, M.; Shishkin, A. Cadmium Recovery from Spent Ni–Cd Batteries: A Brief Review. Metals 2021, 11, 1714. [Google Scholar] [CrossRef]
- Aldebei, F.; Dombi, M. Mining the Built Environment: Telling the Story of Urban Mining. Buildings 2021, 11, 388. [Google Scholar] [CrossRef]
- Blumbergs, E.; Serga, V.; Platacis, E.; Maiorov, M.; Brekis, A.; Shishkin, A. A Sustainable Approach for Cadmium Recovery from Oxide Using Molten Salt Slag. Metals 2020, 10, 981. [Google Scholar] [CrossRef]
- Serga, V.; Zarkov, A.; Blumbergs, E.; Shishkin, A.; Baronins, J.; Elsts, E.; Pankratov, V. Leaching of Gold and Copper from Printed Circuit Boards under the Alternating Current Action in Hydrochloric Acid Electrolytes. Metals 2022, 12, 1953. [Google Scholar] [CrossRef]
- Blumbergs, E.; Serga, V.; Shishkin, A.; Goljandin, D.; Shishko, A.; Zemcenkovs, V.; Markus, K.; Baronins, J.; Pankratov, V. Selective Disintegration–Milling to Obtain Metal-Rich Particle Fractions from E-Waste. Metals 2022, 12, 1468. [Google Scholar] [CrossRef]
- Serga, V.; Zarkov, A.; Shishkin, A.; Elsts, E.; Melnichuks, M.; Maiorov, M.; Blumbergs, E.; Pankratov, V. Study of Metal Leaching from Printed Circuit Boards by Improved Electrochemical Hydrochlorination Technique Using Alternating Current. Metals 2023, 13, 662. [Google Scholar] [CrossRef]
- Serga, V.; Zarkov, A.; Shishkin, A.; Melnichuks, M.; Pankratov, V. Investigation of the Impact of Electrochemical Hydrochlorination Process Parameters on the Efficiency of Noble (Au, Ag) and Base Metals Leaching from Computer Printed Circuit Boards. Metals 2024, 14, 65. [Google Scholar] [CrossRef]
- Shishkin, A.; Mironovs, V.; Vu, H.; Novak, P.; Baronins, J.; Polyakov, A.; Ozolins, J. Cavitation-Dispersion Method for Copper Cementation from Wastewater by Iron Powder. Metals 2018, 8, 920. [Google Scholar] [CrossRef]
- Rudnik, E.; Nikiel, M. Hydrometallurgical recovery of cadmium and nickel from spent Ni-Cd batteries. Hydrometallurgy 2007, 89, 61–71. [Google Scholar] [CrossRef]
- Hazotte, C.; Leclerc, N.; Meux, E.; Lapicque, F. Direct recovery of cadmium and nickel from Ni-Cd spent batteries by electroassisted leaching and electrodeposition in a single-cell process. Hydrometallurgy 2016, 162, 91–103. [Google Scholar] [CrossRef]
- Randhawa, N.; Gharami, K.; Kumar, M. Leaching kinetics of spent nickel–cadmium battery in sulphuric acid. Hydrometallurgy 2016, 165, 191–198. [Google Scholar] [CrossRef]
- Weshahy, A.; Sakr, A.; Gouda, A.; Atia, B.; Somaily, H.; Hanfi, M.; Sayyed, M.; Sheikh, R.; El-Sheikh, E.; Radwan, H.; et al. Selective Recovery of Cadmium, Cobalt, and Nickel from Spent Ni–Cd Batteries Using Adogen® 464 and Mesoporous Silica Derivatives. Int. J. Mol. Sci. 2022, 23, 8677. [Google Scholar] [CrossRef]
- Nogueira, C.; Delmas, F. New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni–Cd batteries by solvent extraction. Hydrometallurgy 1999, 52, 267–287. [Google Scholar] [CrossRef]
- Łukomska, A.; Wiśniewska, A.; Dạbrowski, Z.; Kolasa, D.; Lach, J.; Wróbel, K.; Domańska, U. New method for recovery of nickel and cadmium from the “black mass” of spent Ni-Cd batteries by solvent extraction. J. Mol. Liq. 2022, 357, 119087. [Google Scholar] [CrossRef]
- Xue, Z.; Hua, Z.; Yao, N.; Chen, S. Separation and Recovery of Nickel and Cadmium from Spent Cd—Ni Storage Batteries and Their Process Wastes. Sep. Sci. Technol. 1992, 27, 213–221. [Google Scholar] [CrossRef]
- Freitas, M.; Rosalém, S. Electrochemical recovery of cadmium from spent Ni–Cd batteries. J. Power Sources 2005, 139, 366–370. [Google Scholar] [CrossRef]
- Hung, Y.; Yin, L.; Wang, J.; Wang, C.; Tsai, C.; Kuo, Y. Recycling of spent nickel–cadmium battery using a thermal separation process. Environ. Prog. Sustain. Energy 2018, 37, 645–654. [Google Scholar] [CrossRef]
- Velgosova, O.; Kadukova, J.; Marcinčáková, R.; Palfy, P.; Trpčevská, J. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries. Waste Manag. 2013, 33, 456–461. [Google Scholar] [CrossRef]
- Paul, S.; Shakya, A.; Ghosh, P. Bacterially-assisted recovery of cadmium and nickel as their metal sulfide nanoparticles from spent Ni-Cd battery via hydrometallurgical route. J. Environ. Manag. 2020, 261, 110113. [Google Scholar] [CrossRef]
- Dasoyan, M.; Novoderezhkin, V.V.; Tomashevsky, B.E. Production of Electric Batteries; Vysshya Shkola: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Bernardes, A.M.; Espinosa, D.C.R.; Tenório, J.A.S. Recycling of batteries: A review of current processes and technologies. J. Power Sources 2004, 130, 291–298. [Google Scholar] [CrossRef]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- Daosan, M.; Novoderezhkin, V.V.; Tomashevskij, F.F. Production of Electrolytic Accumulators (Прoизвoдствo Электрических Аккумулятoрoв); Visshaja Shkola: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Ismail, W.; El-Shaer, A.; Abdelfatah, M. Phase transition of Cd(OH)2 and physical properties of CdO microstructures prepared by precipitation method for optoelectronic applications. IOP Conf. Ser. Mater. Sci. Eng. 2020, 956, 012006. [Google Scholar] [CrossRef]
- Lyon, R.N.; Katz, D.L.V. Liquid-Metals Handbook; Navexos, P., Ed.; US Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Varipajev, V.N.; Daosan, M.A.; Nikolskij, V.A. The Chemical Sources of the Current; Vysshya Shkola: Moscow, Russia, 1990. [Google Scholar]
- Jiang, Y.; Deng, Y.; Bu, W. Pyrometallurgical extraction of valuable elements in ni-metal hydride battery electrode materials. Metall. Mater. Trans. B 2015, 46, 2153–2157. [Google Scholar] [CrossRef]
- Hoyle, G. Electroslag Processes: Principles and Practice; Applied Science Publishers: London, UK, 1983; ISBN 85334-164-8. [Google Scholar]
- Platacis, E.; Kaldre, I.; Blumbergs, E.; Goldšteins, L.; Serga, V. Titanium production by magnesium thermal reduction in the electroslag process. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Volinskij, V.V. Methods for processing electrodes of nickel-cadmium batteries. Bull. Saratov State Tech. Univ. 2006, 3, 104–112. (In Russian) [Google Scholar]
- Bojarevičs, V. Electrovortex Flows; Zinatne: Riga, Latvia, 1985. (In Russian) [Google Scholar]
- Kompan, Y.Y.; Shcherbinin, E.V. Electroslag Welding and Melting with Controllable MHD-Processes; Mashinostroenie: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Yachikov, I.M.; Portnova, I.V.; Larina, T.P. Study of the behavior of current-carrying liquid in the bath of DC ARC furnace by an external vertical magnetic field on a physical model. Izv. Ferr. Metall. 2018, 61, 28–34. (In Russian) [Google Scholar] [CrossRef]
- Yachikov, I.M.; Portnova, I.V.; Larina, T.P. Behavior of Conducting Liquid within an Arc Furnace in a Vertical Magnetic field. Steel Transl. 2018, 48, 1–6. [Google Scholar] [CrossRef]
- Yachikov, I.M. Modeling of magnetic field behavior in dc arc furnace bath for different designs of current lead of bottom electrode. Sci. Eur. 2016, 2, 67–72. [Google Scholar]
- Yachikov, I.M. Modelling of electrovortex flows and heat/mass transfer in the dc arc furnace bath. Magnetohydrodynamics 2016, 52, 301–310. [Google Scholar] [CrossRef]
- Yachikov, I.M.; Zalyautdinov, R.Y. The research of magnetic field of metal in dc arc furnace with different forms of busbars to the bottom electrode. Izv. Ferr. Metall. 2014, 57, 58–63. (In Russian) [Google Scholar] [CrossRef]
- Mochinaga, J.; Ohtani, H.; Igarashi, K. Phase Diagram of Ternary DyCl3-KCl-NaCl System. Denki Kagaku Oyobi Kogyo Butsuri Kagaku 1981, 49, 19–21. [Google Scholar] [CrossRef]
- Available online: http://www.factsage.cn/fact/phase_diagram.php?file=KCl-NaCl.jpg&dir=FTsalt (accessed on 28 July 2025).
- Filatov, A.A.; Tkacheva, O.J.; Pershin, P.S.; Holkina, A.S.; Zaikov, J.P. Study of Electrochemical Processes in Molten Salts: Educational and Methodological Manual; Ural University Publishing House: Ekaterinburg, Russia, 2020. (In Russian) [Google Scholar]
- Vinogradov, D.A.; Teplyakov, I.O.; Ivochkin, Y.P. Numerical simulation of the electrovortex flow in the non-inductive approximation under the influence of an external magnetic field. J. Phys. Conf. Ser. 2019, 1359, 012021. [Google Scholar] [CrossRef]
- Tang, L.; Tang, C.; Xiao, J.; Zeng, P.; Tang, M. A Cleaner Process for Valuable Metals Recovery from Hydrometallurgical Zinc Residue. J. Clean. Prod. 2018, 197, 1291–1300. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Rare Earths and the Balance Problem. J. Sustain. Metall. 2015, 1, 29–38. [Google Scholar] [CrossRef]
Paper Title | Year | Summary | Ref. |
---|---|---|---|
A Sustainable Approach for Cadmium Recovery from Oxide Using Molten Salt Slag | 2020 | Describes a green method for cadmium recovery from CdO using a ternary chloride slag, minimizing Cd vapor release. | [4] |
Cadmium Recovery from Spent Ni-Cd Batteries: A Brief Review | 2021 | Reviews recent progress and commercial methods for cadmium recovery from spent Ni-Cd batteries. | [2] |
Electrochemical recovery of cadmium from spent Ni-Cd batteries | 2005 | Investigates cadmium recovery from spent Ni-Cd batteries using galvanostatic electrodeposition from acidic solutions. | [17] |
Hydrometallurgical recovery of cadmium and nickel from spent Ni-Cd batteries | 2007 | Proposes a hydrometallurgical process for selective recovery of cadmium and nickel with high purity and efficiency. | [10] |
Direct recovery of cadmium and nickel from Ni-Cd spent batteries by electroassisted leaching and electrodeposition in a single-cell process | 2016 | Develops a single-cell electrochemical process for direct recovery of cadmium and nickel from spent Ni-Cd batteries. | [11] |
Experimental Parameter | Value |
---|---|
Crucible temperature before pouring flux | 300 °C |
Temperature of pouring flux into crucible | 850 °C |
KN flux weight | 2000 g |
Weight of brown coal fraction 5–25 mm | 600 g |
Weight of cadmium oxide | 128 g |
Electric current, current strength | 19 А |
Electric current, voltage | 70 V |
Frequency of electric current | 50 Hz |
Element | Extracted Spectrum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Line Type | Intensity | Net Counts | Weight % | Atom % | Atom % Err | Norm. wt.% | Chemical Formula | Compound % | Norm. Compound % | |
C K | K | 432.974 | 201… | 49.120 | 87.667 | 0.381 | 49.120 | C | 49.120 | 49.120 |
Cd L | L | 379.994 | 175… | 43.975 | 8.387 | 0.038 | 43.975 | Cd | 43.975 | 43.975 |
Ca K | K | 16.766 | 78,015 | 1.404 | 0.751 | 0.017 | 1.404 | Ca | 1.404 | 1.404 |
Cl K | K | 24.303 | 113… | 1.375 | 0.832 | 0.013 | 1.375 | Cl | 1.375 | 1.375 |
Fe K | K | 6.668 | 31,026 | 1.181 | 0.453 | 0.009 | 1.181 | Fe | 1.181 | 1.181 |
Si K | K | 16.076 | 74,802 | 0.998 | 0.762 | 0.022 | 0.998 | Si | 0.998 | 0.998 |
Al K | K | 9.872 | 45,937 | 0.708 | 0.562 | 0.034 | 0.708 | Al | 0.708 | 0.708 |
Ti K | K | 3.197 | 14,878 | 0.382 | 0.171 | 0.011 | 0.382 | Ti | 0.382 | 0.382 |
Cu K | K | 1.172 | 5455 | 0.338 | 0.114 | 0.011 | 0.338 | Cu | 0.338 | 0.338 |
S K | K | 5.442 | 25,228 | 0.268 | 0.179 | 0.012 | 0.268 | S | 0.268 | 0.268 |
Mn K | K | 0.657 | 3059 | 0.112 | 0.044 | 0.008 | 0.112 | Mn | 0.112 | 0.112 |
Cr K | K | 0.674 | 3135 | 0.094 | 0.039 | 0.006 | 0.094 | Cr | 0.094 | 0.094 |
Mg K | K | 0.469 | 2183 | 0.045 | 0.040 | 0.32 | 0.045 | Mg | 0.045 | 0.045 |
100.000 | 100.000 | 100.000 | 100.000 | 100.000 |
Element | Extracted Spectrum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Line Type | Intensity | Net Counts | Weight % | Atom % | Atom % Err | Norm. wt.% | Chemical Formula | Compound % | Norm. Compound % | |
Cl K | K | 2051.682 | 774… | 54.338 | 50.285 | 0.148 | 54.338 | Cl | 54.338 | 54.338 |
K K | K | 630.639 | 237… | 25.496 | 21.394 | 0.081 | 25.496 | K | 25.496 | 25.496 |
Na K | K | 451.336 | 170… | 18.854 | 26.907 | 0.109 | 18.854 | Na | 18.854 | 18.854 |
Al K | K | 27.301 | 102… | 0.840 | 1.022 | 0.013 | 0.840 | Al | 0.840 | 0.840 |
Fe K | K | 2.649 | 9993 | 0.227 | 0.134 | 0.015 | 0.227 | Fe | 0.227 | 0.227 |
Ti K | K | 3.421 | 12,907 | 0.198 | 0.136 | 0.010 | 0.198 | Ti | 0.198 | 0.198 |
C K | K | 0.114 | 429 | 0.045 | 0.123 | 0.007 | 0.045 | C | 0.045 | 0.045 |
O K | K | 0.000 | 0 | 0.000 | 0.000 | - | 0.000 | O | 0.000 | 0.000 |
100.000 | 100.000 | 100.000 | 100.000 | 100.000 |
Element | Extracted Spectrum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Line Type | Intensity | Net Counts | Weight % | Atom % | Atom % Err | Norm. wt.% | Chemical Formula | Compound % | Norm. Compound % | |
Cl K | K | 2331.917 | 965… | 53.304 | 49.254 | 0.144 | 53.304 | Cl | 53.304 | 53.304 |
K K | K | 761.487 | 315… | 26.454 | 22.164 | 0.083 | 26.454 | K | 26.454 | 26.454 |
Na K | K | 540.033 | 223… | 19.433 | 27.691 | 0.111 | 19.433 | Na | 19.433 | 19.433 |
Al K | K | 19.761 | 81,835 | 0.529 | 0.642 | 0.012 | 0.529 | Al | 0.529 | 0.529 |
Ti K | K | 5.024 | 20,807 | 0.252 | 0.172 | 0.010 | 0.252 | Ti | 0.252 | 0.252 |
C K | K | 0.085 | 350 | 0.029 | 0.078 | 0.005 | 0.029 | C | 0.029 | 0.029 |
100.000 | 100.000 | 100.000 | 100.000 | 100.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blumbergs, E.; Maiorov, M.; Bogachov, A.; Platacis, E.; Ivanov, S.; Gavrilovs, P.; Pankratov, V. A Green Electroslag Technology for Cadmium Recovery from Spent Ni-Cd Batteries Under Protective Flux with Electromagnetic Stirring by Electrovortex Flows. Metals 2025, 15, 959. https://doi.org/10.3390/met15090959
Blumbergs E, Maiorov M, Bogachov A, Platacis E, Ivanov S, Gavrilovs P, Pankratov V. A Green Electroslag Technology for Cadmium Recovery from Spent Ni-Cd Batteries Under Protective Flux with Electromagnetic Stirring by Electrovortex Flows. Metals. 2025; 15(9):959. https://doi.org/10.3390/met15090959
Chicago/Turabian StyleBlumbergs, Ervīns, Michail Maiorov, Artur Bogachov, Ernests Platacis, Sergei Ivanov, Pavels Gavrilovs, and Vladimir Pankratov. 2025. "A Green Electroslag Technology for Cadmium Recovery from Spent Ni-Cd Batteries Under Protective Flux with Electromagnetic Stirring by Electrovortex Flows" Metals 15, no. 9: 959. https://doi.org/10.3390/met15090959
APA StyleBlumbergs, E., Maiorov, M., Bogachov, A., Platacis, E., Ivanov, S., Gavrilovs, P., & Pankratov, V. (2025). A Green Electroslag Technology for Cadmium Recovery from Spent Ni-Cd Batteries Under Protective Flux with Electromagnetic Stirring by Electrovortex Flows. Metals, 15(9), 959. https://doi.org/10.3390/met15090959