A Comparative Evaluation of Microbiologically Induced Corrosion Behaviors of 316L Austenitic and 2205 Duplex Stainless Steels Inoculated in Desulfovibrio vulgaris
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Cultural Medium
2.3. Cell Counts
2.4. Biofilm Conditions
2.5. Weight Loss
2.6. Electrochemical Testing
2.7. Corrosion Pits Observation
2.8. Corrosion Product Analysis
3. Results and Discussion
3.1. Cell Counting
3.2. CLSM
3.3. Weight Loss Analysis
3.4. Pit Depths
3.5. Electrochemical Performance Testing
2205 | 1 | 25.36 | 5.39 × 10−5 | 0.87 | 33 | 6.21 × 10−5 | 0.85 | 4.23 × 105 |
3 | 22.4 | 6.96 × 10−5 | 0.83 | 82 | 8.35 × 10−5 | 0.83 | 3.67 × 105 | |
7 | 24.66 | 7.19 × 10−5 | 0.81 | 173 | 6.10 × 10−5 | 0.82 | 4.04 × 105 | |
316L | 1 | 25.81 | 5.72 × 10−5 | 0.86 | 34 | 7.02 × 10−5 | 0.83 | 3.76 × 105 |
3 | 23.32 | 7.63 × 10−5 | 0.81 | 107 | 6.83 × 10−5 | 0.81 | 3.16 × 105 | |
7 | 23.73 | 7.6 × 10−5 | 0.80 | 162 | 5.69 × 10−5 | 0.80 | 3.50 × 105 |
icorr (μA cm−2) | Ecorr (V) vs. SCE | βa (mV/dec) | βc (mV/dec) | |
---|---|---|---|---|
2205 SS | 9.4 × 10−2 | –0.37 | 121 | –241 |
316L SS | 2.0 | –0.31 | 96 | –709 |
3.6. Surface and Cross-Sectional Morphology
3.7. Corrosion Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muyzer, G.; Stams, A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef]
- Li, Z.; Sun, W.; Zhou, H.; Zhang, M.X.; Fan, Y.Q.; Gu, T.Y.; Wang, F.H.; Xu, D.K. Advanced microbial technologies for in-depth studies of microbiologically influenced corrosion and its mitigation. Corros. Sci. 2025, 256, 113211. [Google Scholar] [CrossRef]
- Dong, Y.Z.; Yang, L.L.; Fan, Y.Q.; Liu, D.; Zhou, E.Z.; He, J.J.; Cui, M.M.; Li, Y.X.; Wang, F.H.; Gu, T.Y.; et al. Size effects of conductive nanoparticles in microbiologically influenced corrosion. Corros. Sci. 2025, 255, 113130. [Google Scholar] [CrossRef]
- Xu, D.; Jia, R.; Li, Y.; Gu, T. Advances in the treatment of problematic industrial biofilms. World J. Microbiol. Biotechnol. 2017, 33, 97. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Ning, C.Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioact. Mater. 2019, 4, 189–195. [Google Scholar] [CrossRef]
- Yazdi, M.; Khan, F.; Abbassi, R.; Quddus, N.; Castaneda-Lopez, H. A review of risk-based decision-making models for MIC in offshore pipelines. Reliab. Eng. Syst. Saf. 2022, 223, 108474. [Google Scholar] [CrossRef]
- Jia, R.; Yang, D.Q.; Abd Rahman, H.B.; Gu, T.Y. Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals. Int. Biodeterior. Biodegrad. 2017, 125, 116–124. [Google Scholar] [CrossRef]
- Jia, R.; Yang, D.Q.; Xu, J.; Xu, D.K.; Gu, T.Y. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros. Sci. 2017, 127, 1–9. [Google Scholar] [CrossRef]
- Chen, S.Q.; Li, Y.; Cheng, Y.F. Nanopatterning of steel by one-step anodization for anti-adhesion of bacteria. Sci. Rep. 2017, 7, 5326. [Google Scholar] [CrossRef]
- Yu, L.; Duan, J.Z.; Zhao, W.; Huang, Y.L.; Hou, B.R. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode. Electrochim. Acta 2011, 56, 9041–9047. [Google Scholar] [CrossRef]
- Liu, H.W.; Gu, T.Y.; Zhang, G.A.; Cheng, Y.F.; Wang, H.T.; Liu, H.F. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Corros. Sci. 2016, 102, 93–102. [Google Scholar] [CrossRef]
- Liu, B.; Fan, E.D.; Jia, J.H.; Du, C.W.; Liu, Z.Y.; Li, X.G. Corrosion mechanism of nitrate reducing bacteria on X80 steel correlated to its intermediate metabolite nitrite. Constr. Build. Mater. 2021, 303, 124454. [Google Scholar] [CrossRef]
- Sowards, J.W.; Mansfield, E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria. Corros. Sci. 2014, 87, 460–471. [Google Scholar] [CrossRef]
- Liu, X.Z.; Wang, Y.H.; Song, Y.W.; Liu, W.F.; Zhang, J.; Li, N.N.; Dong, K.H.; Cai, Y.; Han, E.-H. The respective roles of sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) in the mixed microbial corrosion process of carbon steel pipelines. Corros. Sci. 2024, 240, 112479. [Google Scholar] [CrossRef]
- Gu, T.Y.; Jia, R.; Unsal, T.; Xu, D.K. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. J. Mater. Sci. Technol. 2019, 35, 631–636. [Google Scholar] [CrossRef]
- Sun, D.X.; Wu, M.; Xie, F. Effect of sulfate-reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea-mud simulated solution. Mater. Sci. Eng. A 2018, 721, 135–144. [Google Scholar] [CrossRef]
- Enning, D.; Garrelfs, J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol. 2014, 80, 1226–1236. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Jabbar, K.A.; Rasool, K.; Pandey, R.P.; Sliem, M.H.; Helal, M.; Samara, A.; Abdullah, A.M.; Mahmoud, K.A. Controlling the biocorrosion of sulfate-reducing bacteria (SRB) on carbon steel using ZnO/chitosan nanocomposite as an eco-friendly biocide. Corros. Sci. 2019, 148, 397–406. [Google Scholar] [CrossRef]
- Xue, Y.; Voordouw, G. Control of microbial sulfide production with biocides and nitrate in oil reservoir simulating bioreactors. Front. Microbiol. 2015, 6, 1387. [Google Scholar] [CrossRef]
- Gutierrez, O.; Park, D.; Sharma, K.R.; Yuan, Z.G. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water Res. 2009, 43, 2549–2557. [Google Scholar] [CrossRef]
- Zhang, L.M.; Yan, M.C.; Zhang, S.D.; Zhu, L.Y.; Umoh, A.J.; Ma, A.L.; Zhneg, Y.G.; Wang, J.Q. Significantly enhanced resistance to SRB corrosion via Fe-based amorphous coating designed with high dose corrosion-resistant and antibacterial elements. Corros. Sci. 2020, 164, 108305. [Google Scholar] [CrossRef]
- Nguyen, T.; Roddick, F.A.; Fan, L. Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.Y.; Qin, Y.X.; Ding, Q.M.; Gao, Y.N. Study on corrosion behavior of X80 steel under stripping coating by sulfate reducing bacteria. Bmc Biotechnol. 2021, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Song, D.Z.; Zou, J.T.; Sun, L.L.; Zhang, Y.P.; Zhang, J.Y.; Liang, X.H.; Zhang, S.Q.; Li, Y.S.; Li, H.J.; Xi, B.; et al. Enhanced the SRB corrosion resistance of 316L stainless steel via adjusting the addition of Cu and Ce elements. Vacuum 2024, 224, 113183. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, Y.F.; Voordouw, G. A comparative study of corrosion of 316L stainless steel in biotic and abiotic sulfide environments. Int. Biodeterior. Biodegrad. 2017, 120, 91–96. [Google Scholar] [CrossRef]
- Shen, T.W.; Feng, L.; Shao, Y.X.; Chen, Y.X.; Xia, X.J.; Chen, Y.L.; Zhao, W. Relationship between phase transformation and corrosion performance of 2205 duplex stainless steel fabricated by laser powder bed fusion. Mater. Today Commun. 2025, 44, 111919. [Google Scholar] [CrossRef]
- Grengg, C.; Mittermayr, F.; Ukrainczyk, N.; Koraimann, G.; Kienesberger, S.; Dietzel, M. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Res. 2018, 134, 341–352. [Google Scholar] [CrossRef]
- Lü, X.H.; Zhang, X.X.; Zhao, K.F.; Chen, Z.M.; Li, J.; Wang, C. Study on corrosion resistance mechanism of Cr-containing steel in simulated oilfield produced fluid. Int. J. Electrochem. Sci. 2023, 18, 100154. [Google Scholar] [CrossRef]
- Tang, Y.H.; Li, B.; Shi, H.Y.; Guo, Y.X.; Zhang, S.Z.; Zhang, J.S.; Zhang, X.Y.; Liu, R.P. Simultaneous improvement of corrosion and wear resistance of Fe–Mn–Al–C lightweight steels: The role of Cr/Mo. Mater. Charact. 2023, 205, 113274. [Google Scholar] [CrossRef]
- Suo, D.H.; Dai, W.; Liu, Y.Y.; Zhang, B.; Zheng, K.K.; Tu, W.R.; Jiang, Y.M.; Li, J.; Sun, Y.T. Optimizing annealing temperature for Duplex Stainless Steel 2205 in acidic NaCl environments according to corrosion resistance. Corros. Sci. 2023, 222, 111374. [Google Scholar] [CrossRef]
- Song, X.; Hu, Y.; Yan, Z.J.; Qi, H.P. Corrosion resistance improvement in 6Cr13 martensitic stainless steel via quenching-tempering and partitioning. Mater. Corros. 2023, 74, 544–550. [Google Scholar] [CrossRef]
- Cai, X.; Chang, S.K.; Yang, M.M.; Li, S.J.; Wang, C.; Qiao, Y.X.; Zhou, J.; Xue, F. From cast to wire-arc DED: An investigation on NAB alloy MIC resistance. Corros. Sci. 2025, 251, 112910. [Google Scholar] [CrossRef]
- Ebeagwu, M.C.; Wei, B.; Cai, Z.; Udoh, I.I.; Xu, J.; Sun, C. Insights into temperature-dependent microbiologically influenced corrosion of 2205 duplex stainless steel induced by Desulfovibrio vulgaris. Electrochim. Acta 2025, 538, 146967. [Google Scholar] [CrossRef]
- Li, J.L.; Chen, L.J.; Wei, B.; Wei, B.X.; Xu, J.; Wu, T.Q.; Sun, C. Corrosion characterization in SLM-manufactured and wrought 316 L Stainless Steel induced by Desulfovibrio desulfuricans. Constr. Build. Mater. 2025, 470, 140602. [Google Scholar] [CrossRef]
- Son, S.; Hyun, S.P.; Charlet, L.D.; Kwon, K. Thermodynamic stability reversal of iron sulfides at the nanoscale: Insights into the iron sulfide formation in low-temperature aqueous solution. Geochim. Cosmochim. Acta 2022, 338, 220–228. [Google Scholar] [CrossRef]
- Thiel, J.; Byrne, J.M.; Kappler, A.; Pester, M. Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proc. Natl. Acad. Sci. USA 2019, 116, 6897–6902. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, J.G. Corrosion behavior of pipeline carbon steel under different iron oxide deposits in the district heating system. Metals 2017, 7, 182. [Google Scholar] [CrossRef]
- Avdeev, Y.G.; Kuznetsov, Y.I. Iron oxide and oxyhydroxide phases formed on steel surfaces and their dissolution in acidic media. Review. Int. J. Corros. Scale Inhib. 2023, 12, 366–409. [Google Scholar]
Material | Cl | Si | Mn | S | P | Cr | Ni | Mo | N | Fe | PREN* |
---|---|---|---|---|---|---|---|---|---|---|---|
316L | 0.02 | 0.5 | 1.4 | 0.003 | 0.035 | 17.45 | 12.11 | 2.3 | 0.03 | Bal. | 25.52 |
2205 | 0.03 | 0.6 | 1.5 | 0.001 | 0.026 | 22.30 | 5.80 | 3.1 | 0.16 | Bal. | 35.09 |
Component | Chemical | Amount |
---|---|---|
Component I | MgSO4∙7H2O | 4.1 g/L |
Sodium citrate | 5.0 g/L | |
CaSO4∙2H2O | 1.0 g/L | |
NH4Cl | 1.0 g/L | |
Distilled water | 400 mL/L | |
Component II | K2HPO4 | 0.5 g/L |
Distilled water | 200 mL/L | |
Component III | Sodium lactate | 4.5 mL/L |
Yeast extract | 1.0 g/L | |
Distilled water | 400 mL/L | |
Component IV | Fe(NH4)2(SO4)2 | 1.0 g/L |
Corrosion Product | 2205 | 316L | ||
---|---|---|---|---|
Binding Energy (eV) | Atom % | Binding Energy (eV) | Atom % | |
FeS | 713.6 | 19.88 | 713.6 | 10.65 |
Fe2O3 | 711.6 | 42.82 | 711.6 | 46.60 |
Fe3O4 | 708.1 | 5.59 | 710.2 | 38.47 |
FeO | 710.7 | 31.71 | ~ | ~ |
FeS2 | ~ | ~ | 707.3 | 4.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, Y.; Guo, Q.; Zhang, X.; Li, X.; Li, Y.; Cai, J.; Fan, Y.; Yang, J. A Comparative Evaluation of Microbiologically Induced Corrosion Behaviors of 316L Austenitic and 2205 Duplex Stainless Steels Inoculated in Desulfovibrio vulgaris. Metals 2025, 15, 1040. https://doi.org/10.3390/met15091040
Li Z, Chen Y, Guo Q, Zhang X, Li X, Li Y, Cai J, Fan Y, Yang J. A Comparative Evaluation of Microbiologically Induced Corrosion Behaviors of 316L Austenitic and 2205 Duplex Stainless Steels Inoculated in Desulfovibrio vulgaris. Metals. 2025; 15(9):1040. https://doi.org/10.3390/met15091040
Chicago/Turabian StyleLi, Zhong, Yuzhou Chen, Qiang Guo, Xiaohu Zhang, Xiaolong Li, Yong Li, Jiaxing Cai, Yi Fan, and Jike Yang. 2025. "A Comparative Evaluation of Microbiologically Induced Corrosion Behaviors of 316L Austenitic and 2205 Duplex Stainless Steels Inoculated in Desulfovibrio vulgaris" Metals 15, no. 9: 1040. https://doi.org/10.3390/met15091040
APA StyleLi, Z., Chen, Y., Guo, Q., Zhang, X., Li, X., Li, Y., Cai, J., Fan, Y., & Yang, J. (2025). A Comparative Evaluation of Microbiologically Induced Corrosion Behaviors of 316L Austenitic and 2205 Duplex Stainless Steels Inoculated in Desulfovibrio vulgaris. Metals, 15(9), 1040. https://doi.org/10.3390/met15091040