Influence of Inhomogeneous Plastic Strain and Crystallographic Orientations on Fatigue-Induced Dislocation Structures in FCC Metals
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens
2.2. Fatigue Tests
2.3. Dislocation Characterizations
3. Results
3.1. Mechanical Response
3.2. ECC and EBSD Characterization of Dislocation Microstructures
3.2.1. Near-[]-Oriented Copper Single Crystals
3.2.2. Near-[011]-Oriented Copper Single Crystals
3.2.3. Polycrystalline SUS316L Stainless Steel
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Dai, W.; Yue, H.; Guo, C.; Ji, Z.; Li, Q.; Zhang, J. Fatigue Life Prediction of 2024-T3 Clad Al Alloy Based on an Improved SWT Equation and Machine Learning. Materials 2025, 18, 332. [Google Scholar] [CrossRef]
- Geng, P.; Wang, Q. Structural Mechanics Model for Anisotropic Damage and Fatigue Life Prediction Method of Face-Centered Cubic Metal Materials. Int. J. Fatigue 2022, 156, 106657. [Google Scholar] [CrossRef]
- Lee, S.; Choi, H.; Cho, Y.; Baek, M.J.; Park, H.; Seok, M.-Y.; Kwon, Y.N.; Kang, N.; Lee, D.J. Effect of Post-Weld Heat Treatment on Residual Stress and Fatigue Crack Propagation Behavior in Linear Friction Welded Ti-6Al-4V Alloy. Materials 2025, 18, 3285. [Google Scholar] [CrossRef]
- Mlikota, M.; Schmauder, S. On the Critical Resolved Shear Stress and Its Importance in the Fatigue Performance of Steels and Other Metals with Different Crystallographic Structures. Metals 2018, 8, 883. [Google Scholar] [CrossRef]
- Li, X.-W.; Wang, X.-M.; Yan, Y.; Guo, W.-W.; Qi, C.-J. Effect of Pre-Fatigue on the Monotonic Deformation Behavior of a Coplanar Double-Slip-Oriented Cu Single Crystal. Metals 2016, 6, 293. [Google Scholar] [CrossRef]
- Thompson, N.; Wadsworth, N.; Louat, N.X. The Origin of Fatigue Fracture in Copper. Philos. Mag. 1956, 1, 113–126. [Google Scholar] [CrossRef]
- Li, P.; Li, S.X.; Wang, Z.G.; Zhang, Z.F. Formation Mechanisms of Cyclic Saturation Dislocation Patterns in [001], [011] and [111] Copper Single Crystals. Acta Mater. 2010, 58, 3281–3294. [Google Scholar] [CrossRef]
- Basinski, Z.S.; Basinski, S.J. Fundamental Aspects of Low Amplitude Cyclic Deformation in Face-Centred Cubic Crystals. Prog. Mater. Sci. 1992, 36, 89–148. [Google Scholar] [CrossRef]
- Mughrabi, H. Dislocation Wall and Cell Structures and Long-Range Internal Stresses in Deformed Metal Crystals. Acta Metall. 1983, 31, 1367–1379. [Google Scholar] [CrossRef]
- Gong, B.; Wang, Z.G.; Zhang, Y.W. The Cyclic Deformation Behavior of Cu Single Crystal Oriented for Double Slip. Mater. Sci. Eng. A 1995, 194, 171–178. [Google Scholar] [CrossRef]
- Gong, B.; Wang, Z.; Wang, Z.; Zhang, Y. Cyclic Deformation Response and Dislocation Structure of Cu Single Crystals Oriented for Double Slip. Mater. Sci. Eng. A 1996, 210, 94–101. [Google Scholar] [CrossRef]
- Gong, B.; Wang, Z.G.; Wang, Z.G. Cyclic deformation behavior and dislocation structures of [001] copper single crystals—I Cyclic Stress-Strain response and surface feature. Acta Mater. 1997, 45, 1365–1377. [Google Scholar] [CrossRef]
- Molnár, D.; Sun, X.; Lu, S.; Li, W.; Engberg, G.; Vitos, L. Effect of Temperature on the Stacking Fault Energy and Deformation Behaviour in 316L Austenitic Stainless Steel. Mater. Sci. Eng. A 2019, 759, 490–497. [Google Scholar] [CrossRef]
- Obrtlík, K.; Kruml, T.; Polák, J. Dislocation Structures in 316L Stainless Steel Cycled with Plastic Strain Amplitudes over a Wide Interval. Mater. Sci. Eng. A 1994, 187, 1–9. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Z.; Ma, H.; Nakatani, M.; Kawabata, M.O.; Ameyama, K. Ratcheting-Fatigue Behavior of Harmonic-Structure-Designed SUS316L Stainless Steel. Metals 2021, 11, 477. [Google Scholar] [CrossRef]
- Zeng, G.; Huang, Z.; Deng, B.; Ge, R. Crystal Plasticity Finite Element Simulation of Tensile Fracture of 316L Stainless Steel Produced by Selective Laser Melting. Metals 2025, 15, 567. [Google Scholar] [CrossRef]
- Poczklán, L.; Mazánová, V.; Gamanov, Š.; Kruml, T. Fatigue Crack Growth Rate in Axial, Torsional and Multiaxial Mode in 316L Austenitic Steel. Procedia Struct. Integr. 2019, 23, 269–274. [Google Scholar] [CrossRef]
- Man, J.; Vystavěl, T.; Weidner, A.; Kuběna, I.; Petrenec, M.; Kruml, T.; Polák, J. Study of Cyclic Strain Localization and Fatigue Crack Initiation Using FIB Technique. Int. J. Fatigue 2012, 39, 44–53. [Google Scholar] [CrossRef]
- Obrtlík, K.; Polák, J.; Hájek, M.; Vašek, A. Short Fatigue Crack Behaviour in 316L Stainless Steel. Int. J. Fatigue 1997, 19, 471–475. [Google Scholar] [CrossRef]
- Sistaninia, M.; Niffenegger, M. Fatigue Crack Initiation and Crystallographic Growth in 316L Stainless Steel. Int. J. Fatigue 2015, 70, 163–170. [Google Scholar] [CrossRef]
- Mu, P.; Aubin, V.; Alvarez-Armas, I.; Armas, A. Influence of the Crystalline Orientations on Microcrack Initiation in Low-Cycle Fatigue. Mater. Sci. Eng. A 2013, 573, 45–53. [Google Scholar] [CrossRef]
- Li, X.W.; Wang, Z.G.; Li, G.Y.; Wu, S.D.; Li, S.X. Cyclic Stress–Strain Response and Surface Deformation Features of [011] Multiple-Slip-Oriented Copper Single Crystals. Acta Mater. 1998, 46, 4497–4505. [Google Scholar] [CrossRef]
- Li, X.W.; Wang, Z.G.; Li, S.X. Cyclic Deformation Behavior of Double-Slip-Oriented Copper Single Crystals I: Coplanar Double Slip Orientation on 011-111 Side of the Stereographic Triangle. Mater. Sci. Eng. A 1999, 260, 132–138. [Google Scholar] [CrossRef]
- Higashida, K.; Takamura, J.; Narita, N. The Formation of Deformation Bands in f.c.c. Crystals. Mater. Sci. Eng. 1986, 81, 239–258. [Google Scholar] [CrossRef]
- Ma, T.; Miyazawa, T.; Fujii, T. Crystallographic Features of Deformation-Kink Bands in Coplanar-Double-Slip-Oriented Copper Single Crystals. Mater. Charact. 2021, 177, 111151. [Google Scholar] [CrossRef]
- Chai, G. A Study on Fatigue Damage and Crack Initiation in Austenitic Steel Matrix during Very High Cycle Fatigue. Int. J. Fatigue 2024, 179, 108033. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Fu, H.; Cui, Y.; Wang, C.; Chen, H.; Yang, Z.; Cao, W.; Liang, J.; Zhang, C. Retarding Effect of Submicron Carbides on Short Fatigue Crack Propagation: Mechanistic Modeling and Experimental Validation. Acta Mater. 2023, 250, 118875. [Google Scholar] [CrossRef]
- Hayashi, M. Effect of Crystal Orientation on Fatigue Crack Initiation Life in Pure Aluminum Single Crystals. Int. J. Fatigue 2022, 156, 106661. [Google Scholar] [CrossRef]
- Ding, Z.; Pan, J.; Peng, L.; Zhang, H.; Hu, B.; Li, J.; Luo, A.A. The Effect of Microstructure on the Plastic Strain Localization and Fatigue Crack Initiation in Cast Mg–8Gd–3Y–0.5Zr Alloy. Mater. Sci. Eng. A 2021, 801, 140383. [Google Scholar] [CrossRef]
- Mughrabi, H. Fatigue, an Everlasting Materials Problem—Still En Vogue. Procedia Eng. 2010, 2, 3–26. [Google Scholar] [CrossRef]
- Li, X.W.; Wang, Z.G.; Li, S.X. Deformation Bands in Cyclically Deformed Copper Single Crystals. Philos. Mag. A 2000, 80, 1901–1912. [Google Scholar] [CrossRef]
- Ma, T.; Chahara, K.; Wu, J.; Miyazawa, T.; Fujii, T. Analysis of Deformation Bands and Cell Structure in Cyclically Deformed Near-[111]-Oriented Copper Single Crystals. Int. J. Fatigue 2021, 153, 106517. [Google Scholar] [CrossRef]
- Mughrabi, H. The Cyclic Hardening and Saturation Behaviour of Copper Single Crystals. Mater. Sci. Eng. 1978, 33, 207–223. [Google Scholar] [CrossRef]
- Mughrabi, H. Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage. Metall. Mater. Trans. A 2009, 40, 1257–1279. [Google Scholar] [CrossRef]
- Winter, A.T. A Model for the Fatigue of Copper at Low Plastic Strain Amplitudes. Philos. Mag. 1974, 30, 719–738. [Google Scholar] [CrossRef]
- Ackermann, F.; Kubin, L.P.; Lepinoux, J.; Mughrabi, H. The Dependence of Dislocation Microstructure on Plastic Strain Amplitude in Cyclically Strained Copper Single Crystals. Acta Metall. 1984, 32, 715–725. [Google Scholar] [CrossRef]
- Li, S.X.; Li, X.W.; Zhang, Z.F.; Wang, Z.G.; Lu, K. On the Formation of Deformation Bands in Fatigued Copper Single Crystals. Philos. Mag. A 2002, 82, 3129–3147. [Google Scholar] [CrossRef]
- Gong, B.; Wang, Z.R.; Chen, D.L.; Wang, Z.G. Investigation of macro deformation bands in fatigued [001] Cu single crystals by electron channeling contrast technique. Scr. Mater. 1997, 37, 1605–1610. [Google Scholar] [CrossRef]
- Ma, T.; Chahara, K.; Miyazawa, T.; Fujii, T. Formation of Dislocation Structures during Cyclic Deformation in Near-[001] Multiple-Slip-Oriented Copper Single Crystals. Int. J. Fatigue 2022, 162, 106953. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Guo, W.; Zhang, G. Characterization of Dislocation Structures in Copper Single Crystals Using Electron Channelling Contrast Technique in SEM. Cryst. Res. Technol. 2009, 44, 315–321. [Google Scholar] [CrossRef]
- Pan, Q.; Jing, L.; Lu, L. Enhanced Fatigue Endurance Limit of Cu through Low-Angle Dislocation Boundary. Acta Mater. 2023, 244, 118542. [Google Scholar] [CrossRef]
- Wang, B.; Umeda, Y.; Miyazawa, T.; Ohtsuka, M.; Muto, S.; Arai, S.; Fujii, T. Formation Mechanism of Dislocation Network of Cell Structure in Cyclically Deformed Near-[111] Copper Single Crystals. Mater. Sci. Eng. A 2023, 879, 145287. [Google Scholar] [CrossRef]
- Gerland, M.; Mendez, J.; Violan, P.; Ait Saadi, B. Evolution of Dislocation Structures and Cyclic Behaviour of a 316L-Type Austenitic Stainless Steel Cycled in Vacuo at Room Temperature. Mater. Sci. Eng. A 1989, 118, 83–95. [Google Scholar] [CrossRef]
- Meric De Bellefon, G.; Van Duysen, J.C.; Sridharan, K. Composition-Dependence of Stacking Fault Energy in Austenitic Stainless Steels through Linear Regression with Random Intercepts. J. Nucl. Mater. 2017, 492, 227–230. [Google Scholar] [CrossRef]
- Pham, M.S.; Solenthaler, C.; Janssens, K.G.F.; Holdsworth, S.R. Dislocation Structure Evolution and Its Effects on Cyclic Deformation Response of AISI 316L Stainless Steel. Mater. Sci. Eng. A 2011, 528, 3261–3269. [Google Scholar] [CrossRef]
- Pham, M.S.; Holdsworth, S.R.; Janssens, K.G.F.; Mazza, E. Cyclic Deformation Response of AISI 316L at Room Temperature: Mechanical Behaviour, Microstructural Evolution, Physically-Based Evolutionary Constitutive Modelling. Int. J. Plast. 2013, 47, 143–164. [Google Scholar] [CrossRef]
- Pham, M.S.; Holdsworth, S.R. Role of Microstructural Condition on Fatigue Damage Development of AISI 316L at 20 and 300 °C. Int. J. Fatigue 2013, 51, 36–48. [Google Scholar] [CrossRef]
- Jin, N.Y.; Winter, A.T. Cyclic Deformation of Copper Single Crystals Oriented for Double Slip. Acta Metall. 1984, 32, 989–995. [Google Scholar] [CrossRef]
- Zhang, Z. Evolution and Microstructural Characteristics of Deformation Bands in Fatigued Copper Single Crystals. Acta Mater. 2001, 49, 2875–2886. [Google Scholar] [CrossRef]
- Li, X.W.; Umakoshi, Y.; Gong, B.; Li, S.X.; Wang, Z.G. Dislocation Structures in Fatigued Critical and Conjugate Double-Slip-Oriented Copper Single Crystals. Mater. Sci. Eng. A 2002, 333, 51–59. [Google Scholar] [CrossRef]
- Li, P.; Li, S.X.; Wang, Z.G.; Zhang, Z.F. Fundamental Factors on Formation Mechanism of Dislocation Arrangements in Cyclically Deformed Fcc Single Crystals. Prog. Mater. Sci. 2011, 56, 328–377. [Google Scholar] [CrossRef]
- Li, Y.; Laird, C. Cyclic Response and Dislocation Structures of AISI 316L Stainless Steel. Part 2: Polycrystals Fatigued at Intermediate Strain Amplitude. Mater. Sci. Eng. A 1994, 186, 87–103. [Google Scholar] [CrossRef]
- Mayama, T.; Sasaki, K.; Kuroda, M. Quantitative Evaluations for Strain Amplitude Dependent Organization of Dislocation Structures Due to Cyclic Plasticity in Austenitic Stainless Steel 316L. Acta Mater. 2008, 56, 2735–2743. [Google Scholar] [CrossRef]
- Buque, C. Dislocation Structures and Cyclic Behaviour of [011] and [111]-Oriented Nickel Single Crystals. Int. J. Fatigue 2001, 23, 671–678. [Google Scholar] [CrossRef]
- Lepistö, T.K.; Kuokkala, V.-T.; Kettunen, P.O. Dislocation Arrangements in Cyclically Deformed Copper Single Crystals. Mater. Sci. Eng. 1986, 81, 457–463. [Google Scholar] [CrossRef]
- Lepistö, T.K.; Kettunen, P.O. Comparison of the Cyclic Stress-Strain Behaviour of Single-and <111> Multiple-Slip-Oriented Copper Single Crystals. Mater. Sci. Eng. 1986, 83, 1–15. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.-W.; Yang, R.-Q. Study of Fatigue Dislocation Structures in [233] Coplanar Double-Slip-Oriented Copper Single Crystals Using SEM Electronic Channelling Contrast. Int. J. Mater. Res. 2008, 99, 958–963. [Google Scholar] [CrossRef]
- Li, X.-W.; Zhou, Y. SEM-ECC Observations of Dislocation Structures in a Cyclically Deformed Cu Single Crystal Oriented for [223] Conjugate Double Slip. J. Mater. Sci. 2007, 42, 4716–4719. [Google Scholar] [CrossRef]
- Li, P.; Li, S.X.; Wang, Z.G.; Zhang, Z.F. Unified Factor Controlling the Dislocation Evolution of Fatigued Face-Centered Cubic Crystals. Acta Mater. 2017, 129, 98–111. [Google Scholar] [CrossRef]
- Buque, C.; Bretschneider, J.; Schwab, A.; Holste, C. Dislocation Structures in Cyclically Deformed Nickel Polycrystals. Mater. Sci. Eng. A 2001, 300, 254–262. [Google Scholar] [CrossRef]
- Wang, B.; Kimura, T.; Miyazawa, T.; Arai, S.; Fujii, T. Characterization of Dislocation Microstructures in Near-[111] Single Crystal Copper Using High-Voltage Scanning Transmission Electron Microscopy. Mater. Sci. Eng. A 2023, 862, 144482. [Google Scholar] [CrossRef]
- Jin, N.Y. Dislocation Structures in Cyclically Deformed [011] Copper Crystals. Philos. Mag. Lett. 1987, 56, 23–28. [Google Scholar] [CrossRef]
- Li, Y.; Laird, C. Cyclic Response and Dislocation Structures of AISI 316L Stainless Steel. Part 1: Single Crystals Fatigued at Intermediate Strain Amplitude. Mater. Sci. Eng. A 1994, 186, 65–86. [Google Scholar] [CrossRef]
- Magnin, T.; Ramade, C.; Lepinoux, J.; Kubin, L.P. Low-Cycle Fatigue Damage Mechanisms of F.c.c. and B.c.c. Polycrystals: Homologous Behaviour? Mater. Sci. Eng. A 1989, 118, 41–51. [Google Scholar] [CrossRef]
- Pham, M.S.; Holdsworth, S.R. Change of Stress-Strain Hysteresis Loop and Its Links with Microstructural Evolution in AISI 316L during Cyclic Loading. Procedia Eng. 2011, 10, 1069–1074. [Google Scholar] [CrossRef]
- Nellessen, J.; Sandlöbes, S.; Raabe, D. Effects of Strain Amplitude, Cycle Number and Orientation on Low Cycle Fatigue Microstructures in Austenitic Stainless Steel Studied by Electron Channelling Contrast Imaging. Acta Mater. 2015, 87, 86–99. [Google Scholar] [CrossRef]
- Déprés, C.; Robertson, C.F.; Fivel, M.C. Low-Strain Fatigue in AISI 316L Steel Surface Grains: A Three-Dimensional Discrete Dislocation Dynamics Modelling of the Early Cycles I. Dislocation Microstructures and Mechanical Behaviour. Philos. Mag. 2004, 84, 2257–2275. [Google Scholar] [CrossRef]
- Polák, J.; Obrtlík, K.; Hájek, M. Cyclic Plasticity in Type 316L Austenitic Stainless Steel. Fatigue Fract. Eng. Mater. Struct. 1994, 17, 773–782. [Google Scholar] [CrossRef]
- Kumagai, M.; Akita, K.; Kuroda, M.; Harjo, S. In Situ Diffraction Characterization on Microstructure Evolution in Austenitic Stainless Steel during Cyclic Plastic Deformation and Its Relation to the Mechanical Response. Mater. Sci. Eng. A 2021, 820, 141582. [Google Scholar] [CrossRef]
Slip Planes | Slip Directions | SF | |
---|---|---|---|
[]-oriented specimen | (111) primary | [] | 0.32 |
[] (coplanar) | 0.32 | ||
) conjugate | [011] | 0.25 | |
[] (coplanar) | 0.23 | ||
) cross | [011] | 0.25 | |
[] (coplanar) | 0.23 | ||
[]-oriented specimen | (111) primary | [] | 0.43 |
[] (coplanar) | 0.43 | ||
) critical | [101] | 0.37 | |
[110] (coplanar) | 0.37 |
C | Si | Mn | P | S | Ni | Cr | Mo | Co | Fe |
---|---|---|---|---|---|---|---|---|---|
0.019 | 0.47 | 1.48 | 0.036 | 0.002 | 12.03 | 16.96 | 2.03 | 0.23 | Bal. |
Specimen No. | Plastic (Shear) Strain Amplitudes, εpl (γpl) | Saturation Stress Amplitude, ), [MPa] | Frequency, f, [Hz] | Cycle Number, N | Cumulative Plastic Strain, εcum (γcum) |
---|---|---|---|---|---|
[]-oriented specimen (C1) | γpl = 1.0 × 10−3 | 36 | 0.25 | 10,000 | 40 |
[]-oriented specimen (C2) | γpl = 5.0 × 10−3 | 31 | 0.05 | 2000 | 40 |
[]-oriented specimen (C3) | γpl = 1.5 × 10−2 | 40 | 0.017 | 220 | 13.2 |
S1 | εpl = 5.0 × 10−3 | 320 | 0.05 | 2500 | 50 |
S2 | 294 | 2000 | 40 | ||
S3 | 324 | 2800 | 56 |
Electrolyte | Voltage | Temperature | Time | |
---|---|---|---|---|
Copper single crystals | CH3OH:HNO3 = 4:1 | 8 V | 243 K | 30 min |
SUS316L stainless steel | CH3COOH:HClO4 = 9:1 | 35 V | 280 K–293 K | 2 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Bai, Y.; Shi, H.; Wei, Y.; Zhang, C. Influence of Inhomogeneous Plastic Strain and Crystallographic Orientations on Fatigue-Induced Dislocation Structures in FCC Metals. Metals 2025, 15, 1004. https://doi.org/10.3390/met15091004
Ma T, Bai Y, Shi H, Wei Y, Zhang C. Influence of Inhomogeneous Plastic Strain and Crystallographic Orientations on Fatigue-Induced Dislocation Structures in FCC Metals. Metals. 2025; 15(9):1004. https://doi.org/10.3390/met15091004
Chicago/Turabian StyleMa, Tianchang, Yuyang Bai, Haomeng Shi, Yanlong Wei, and Chunwei Zhang. 2025. "Influence of Inhomogeneous Plastic Strain and Crystallographic Orientations on Fatigue-Induced Dislocation Structures in FCC Metals" Metals 15, no. 9: 1004. https://doi.org/10.3390/met15091004
APA StyleMa, T., Bai, Y., Shi, H., Wei, Y., & Zhang, C. (2025). Influence of Inhomogeneous Plastic Strain and Crystallographic Orientations on Fatigue-Induced Dislocation Structures in FCC Metals. Metals, 15(9), 1004. https://doi.org/10.3390/met15091004