Effect of Cu and Ag Content on the Electrochemical Performance of Fe40Al Intermetallic Alloy in Artificial Saliva
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Artificial Saliva
2.3. Electrochemical Corrosion Tests
3. Results and Discussion
3.1. Polarization Curves
3.2. OCP Measurements
3.3. LPR Measurements
3.4. Electrochemical Impedance Spectroscopy Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fróis, A.; Santos, A.C.; Louro, C.S. Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies. Metals 2023, 13, 1955. [Google Scholar] [CrossRef]
- Mohammed, S.; Kök, M.; Qader, I.N.; Coşkun, M. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. Int. J. Innov. Eng. Appl. 2021, 5, 125–130. [Google Scholar] [CrossRef]
- Małkiewicz, K.; Sztogryn, M.; Mikulewicz, M.; Wielgus, A.; Kamiński, J.; Wierzchoń, T. Comparative assessment of the corrosion process of orthodontic archwires made of stainless steel, titanium-molybdenum and nickel-titanium alloys. Arch. Civ. Mech. Eng. 2018, 18, 941–947. [Google Scholar] [CrossRef]
- Anandan, A.; Rajendran, S.; Sathiyabama, J.; Sathiyaraj, D. Electrochemical Behavior of NI-TI Super Elastic Shape Memory Alloy in Artificial Saliva. Int. J. Chemtech. Res. 2018, 11, 29–34. [Google Scholar] [CrossRef]
- Močnik, P.; Kosec, T. A Critical Appraisal of the Use and Properties of Nickel–Titanium Dental Alloys. Materials 2021, 14, 7859. [Google Scholar] [CrossRef]
- Castañeda, I.E.; Gonzalez-Rodriguez, J.G.; Colin, J.; Neri-Flores, M.A. Electrochemical behavior of Ni-Al-Fe alloys in simulated human body solution. J. Solid State Electrochem. 2010, 14, 1145–1152. [Google Scholar] [CrossRef]
- Arrieta-Gonzalez, C.D.; Porcayo-Calderon, J.; Salinas-Bravo, V.M.; Gonzalez-Rodriguez, J.G.; Chacon-Nava, J.G. Electrochemical behavior of Fe3Al modified with Ni in Hank’s solution. Int. J. Electrochem. Sci. 2011, 6, 4016–4031. [Google Scholar] [CrossRef]
- Arrieta-Gonzalez, C.D.; Rodriguez-Diaz, R.A.; Mayen, J.; Retes-Mantilla, R.F.; Torres-Mancera, M.T.; Oros-Méndez, L.A.; Cruz-Mejía, H.; Flores-Garcia, N.S.; Porcayo-Calderon, J. Electrochemical performance of Fe40Al-X (X = Cr, Ti, Co, Ni) alloys exposed to artificial saliva. Materials 2020, 13, 1095. [Google Scholar] [CrossRef]
- Chang, S.H.; Lin, J.X.; Chiang, C.H. Surface properties and metal ions leaching behaviors of nickel-titanium orthodontic archwires modified by oxidation. Dig. J. Nanomater. Biostruct. 2024, 19, 1825–1834. [Google Scholar] [CrossRef]
- Kaiser, K.G.; Delattre, V.; Frost, V.J.; Buck, G.W.; Phu, J.V.; Fernandez, T.G.; Pavel, I.E. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics 2023, 12, 1264. [Google Scholar] [CrossRef]
- Mathur, A.; Mathur, A.; Jain, M.; Gopalakrishnan, D. Level of Copper in Unstimulated Saliva and its Impact on Dental Caries amongst Different Dentition: A in vivo Comparative Analysis. Adv. Hum. Biol. 2023, 13, S23–S26. [Google Scholar] [CrossRef]
- Bora, P.; Nangia, T.; Saxena, A.; Kunchok, T.; Sangal, A. Silver diamine fluoride: Role in management of dental caries. Int. J. Appl. Dent. Sci. 2022, 8, 384–391. [Google Scholar] [CrossRef]
- Shreyash, N.; Bajpai, S.; Khan, M.A.; Vijay, Y.; Tiwary, S.K.; Sonker, M. Green Synthesis of Nanoparticles and Their Biomedical Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 11428–11457. [Google Scholar] [CrossRef]
- Bharti, S.; Mukherji, S.; Mukherji, S. Enhanced antibacterial activity of decahedral silver nanoparticles. J. Nanopart Res. 2021, 23, 1–18. [Google Scholar] [CrossRef]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart Res. 2023, 25, 43. [Google Scholar] [CrossRef]
- Crisan, M.C.; Teodora, M.; Lucian, M. Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. Appl. Sci. 2022, 12, 141. [Google Scholar] [CrossRef]
- Duffó, G.S.; Quezada-Castillo, E. Development of an artificial saliva solution for studying the corrosion behavior of dental alloys. Corrosion 2004, 60, 594–602. [Google Scholar] [CrossRef]
- Eliaz, N.; Gileadi, E. Physical Electrochemistry: Fundamentals, Techniques, and Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2019; ISBN 978-3-527-34139-9. [Google Scholar]
- Rodríguez-Díaz, R.A.; Ramirez-Ledesma, A.L.; Aguilar-Mendez, M.A.; Chavarin, J.U.; Gallegos, M.H.; Juarez-Islas, J.A. Electrochemical corrosion behavior of a Co20Cr alloy in artificial saliva. Int. J. Electrochem. Sci. 2015, 10, 7212–7226. [Google Scholar] [CrossRef]
- Fu, W.; Liu, S.; Jiao, J.; Xie, Z.; Huang, X.; Lu, Y.; Liu, H.; Hu, S.; Zuo, E.; Kou, N.; et al. Wear Resistance and Biocompatibility of Co-Cr Dental Alloys Fabricated with CAST and SLM Techniques. Materials 2022, 15, 3263. [Google Scholar] [CrossRef]
- Gurel, S.; Nazarahari, A.; Canadinc, D.; Gerstein, G.; Maier, H.J.; Cabuk, H.; Bukulmez, T.; Cananoglu, M.; Yagci, M.B.; Toker, S.M.; et al. From corrosion behavior to radiation response: A comprehensive biocompatibility assessment of a CoCrMo medium entropy alloy for utility in orthopedic and dental implants. Intermetallics 2022, 149, 107680. [Google Scholar] [CrossRef]
- Kocijan, A.; Milošev, I.; Pihlar, B. Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis. J. Mater. Sci. Mater. Med. 2004, 15, 643–650. [Google Scholar] [CrossRef]
- Rodríguez-Diaz, R.A.; Uruchurtu-Chavarin, J.; Molina-Ocampo, A.; Porcayo-Calderon, J.; Mendoza, M.E.; Valdez, S.; Juárez-Islas, J. Hot corrosion behavior of FeAl intermetallic compound modified with silver in molten salt mixture. Int. J. Electrochem. Sci. 2013, 8, 11877–11895. [Google Scholar] [CrossRef]
- Beltrán-González, J.; Villamar-Barajas, Y.; Carbajal-De la Torre, G.; Ruiz, A.; Espinosa-Medina, M.A. Effect of temperature on the corrosion behavior of a superplastic Zn–Al–Ag alloy in acid rain solution. MRS Adv. 2021, 6, 815–819. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, R.A.; Uruchurtu-Chavarín, J.; Molina-Ocampo, A.; Porcayo-Calderón, J.; González-Pérez, M.; López-Oglesby, J.M.; Gonzalez-Rodríguez, J.G.; Juárez-Islas, J.A. Corrosion behavior of Fe-Al alloy modified with Cr and Ti in simulated physiological human media. Int. J. Electrochem. Sci. 2013, 8, 958–972. [Google Scholar] [CrossRef]
- Bedmar, J.; García-Rodríguez, S.; Roldán, M.; Torres, B.; Rams, J. Effects of the heat treatment on the microstructure and corrosion behavior of 316 L stainless steel manufactured by Laser Powder Bed Fusion. Corros. Sci. 2022, 209, 110777. [Google Scholar] [CrossRef]
- Zambrano Carrullo, J.C.; Borrás, A.D.; Borrás, V.A.; Navarro-Laboulais, J.; Falcón, J.C.P. Electrochemical corrosion behavior and mechanical properties of Ti–Ag biomedical alloys obtained by two powder metallurgy processing routes. J. Mech. Behav. Biomed. Mater. 2020, 112, 104063. [Google Scholar] [CrossRef]
- Vaidyanathan, T.K.; Prasad, A. In vitro corrosion and tarnish analysis of the Ag-Pd binary system. J. Dent. Res. 1981, 60, 707–715. [Google Scholar] [CrossRef]
- Joska, L.; Poddana, M.; Leitner, J. Corrosion behavior of palladium–silver–copper alloys in model saliva. Dent. Mater. 2008, 24, 1009–1016. [Google Scholar] [CrossRef]
- Figueroa, M.G.; Salvarezza, R.C.; Arvia, A.J. Electrochemical behavior of copper in potassium thiocyanate—I. Dissolution, passivation and pitting processes. Electrochim. Acta 1986, 31, 671–680. [Google Scholar] [CrossRef]
- Figueroa, M.G.; De Mele, M.F.L.; Salvarezza, R.C.; Arvia, A.J. Electrochemical behavior of copper in potassium thiocyanate solution—II. Analysis of potentiostatic current transients. Electrochim. Acta 1987, 32, 231–238. [Google Scholar] [CrossRef]
- Amin, M.A.; Ibrahim, M.M. Pit initiation and growth control of Al in KSCN solutions. Comptes Rendus Chim. 2011, 14, 429–433. [Google Scholar] [CrossRef]
- Amin, M.A. Pitting of Al and Al-Si alloys in KSCN solutions and the effect of light. Arab. J. Chem. 2013, 6, 87–92. [Google Scholar] [CrossRef]
- Salgado-Salgado, R.J.; Porcayo-Calderon, J.; Sotelo-Mazon, O.; Rodriguez-Diaz, R.A.; Salinas-Solano, G.; Salinas-Bravo, V.M.; Martinez-Gomez, L. Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva. Bioinorg. Chem. Appl. 2016, 2016, 4792583. [Google Scholar] [CrossRef]
- Badawy, W.A.; Al-Kharafi, F.M.; Al-Ajmi, J.R. Electrochemical behavior of cobalt in aqueous solutions of different pH. J. Appl. Electrochem. 2000, 30, 693–704. [Google Scholar] [CrossRef]
- Brug, G.J.; Van Den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Garcıa-Alonso, M.C.; Lopez, M.F.; Escudero, M.L.; González-Carrasco, J.L.; Morris, D.G. Corrosion behaviour of an Fe3Al-type intermetallic in a chloride containing solution. Intermetallics 1999, 7, 185–191. [Google Scholar] [CrossRef]
- Rao, V.S. A review of the electrochemical corrosion behaviour of iron aluminides. Electrochim. Acta 2004, 49, 4533–4542. [Google Scholar] [CrossRef]
- Escudero, M.L.; Garcia-Alonso, M.C.; Gonzalez-Carrasco, J.L.; Muñoz-Morris, M.A.; Montealegre, M.A.; Garcia-Oca, C.; Morris, D.G.; Deevi, S.C. Possibilities for improving the corrosion resistance of Fe-40Al intermetallic strip by prior oxide protection. Scr. Mater. 2003, 48, 1549–1554. [Google Scholar] [CrossRef]
- Sharma, G.; Gaonkar, K.B.; Singh, P.R. Effect of Cr addition on pitting behavior of iron aluminide intermetallic. Mater. Lett. 2007, 61, 971–973. [Google Scholar] [CrossRef]
- Negache, M.; Taibi, K.; Souami, N.; Bouchemel, H.; Belkada, R. Effect of Cr, Nb and Zr additions on the aqueous corrosion behavior of iron-aluminide. Intermetallics 2013, 36, 73–80. [Google Scholar] [CrossRef]
Material | Ecorr (mV) | Ba (mV/Dec) | Bc (mV/Dec) | icorr (μA/cm2) | Ipass (μA/cm2) | Epass (mV) | Ipit (μA/cm2) | Epit (mV) |
---|---|---|---|---|---|---|---|---|
Fe40Al | −529 | 197 | 181 | 3.00 | 15 | −386 | 21 | −324 |
Fe40Al-0.5Ag | −473 | 412 | 279 | 1.55 | 19 | −406 | 3.3 | −340 |
Fe40Al-1.0Ag | −437 | 561 | 194 | 3.04 | 33 | −373 | 8.4 | −210 |
Fe40Al-3.0Ag | −510 | 112 | 295 | 32.07 | --- | --- | --- | --- |
Fe40Al-1.0Cu | −470 | 421 | 148 | 1.11 | 2.2 | −350 | 3.2 | 38 |
Fe40Al-3.0Cu | −615 | 338 | 222 | 0.93 | 2.0 | −500 | 4.4 | −180 |
Fe40Al-5.0Cu | −568 | 412 | 257 | 1.60 | 2.1 | −500 | 9.3 | −23 |
316L | −390 | 233 | 106 | 1.04 | 2.2 | −309 | 3.0 | 266 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcayo-Calderon, J.; Rodriguez-Diaz, R.A.; de la Vega Olivas, J.; Arrieta-Gonzalez, C.D.; Gonzalez-Rodriguez, J.G.; Chacón-Nava, J.G.; Reyes-Barragan, J.L. Effect of Cu and Ag Content on the Electrochemical Performance of Fe40Al Intermetallic Alloy in Artificial Saliva. Metals 2025, 15, 899. https://doi.org/10.3390/met15080899
Porcayo-Calderon J, Rodriguez-Diaz RA, de la Vega Olivas J, Arrieta-Gonzalez CD, Gonzalez-Rodriguez JG, Chacón-Nava JG, Reyes-Barragan JL. Effect of Cu and Ag Content on the Electrochemical Performance of Fe40Al Intermetallic Alloy in Artificial Saliva. Metals. 2025; 15(8):899. https://doi.org/10.3390/met15080899
Chicago/Turabian StylePorcayo-Calderon, Jesus, Roberto Ademar Rodriguez-Diaz, Jonathan de la Vega Olivas, Cinthya Dinorah Arrieta-Gonzalez, Jose Gonzalo Gonzalez-Rodriguez, Jose Guadalupe Chacón-Nava, and José Luis Reyes-Barragan. 2025. "Effect of Cu and Ag Content on the Electrochemical Performance of Fe40Al Intermetallic Alloy in Artificial Saliva" Metals 15, no. 8: 899. https://doi.org/10.3390/met15080899
APA StylePorcayo-Calderon, J., Rodriguez-Diaz, R. A., de la Vega Olivas, J., Arrieta-Gonzalez, C. D., Gonzalez-Rodriguez, J. G., Chacón-Nava, J. G., & Reyes-Barragan, J. L. (2025). Effect of Cu and Ag Content on the Electrochemical Performance of Fe40Al Intermetallic Alloy in Artificial Saliva. Metals, 15(8), 899. https://doi.org/10.3390/met15080899