Microstructural and Mechanical Characterization of Co-Free AlxTixCrFe2Ni High-Entropy Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Structural and Mechanical Properties of AlxTixCrFe2Ni Alloys in As-Cast State
3.2. Characterization of Structural and Mechanical Properties of AlxTixCrFe2Ni Alloys After Heat Treatment
4. Discussion
4.1. Effect of Chemical Composition on Microstructural Evolution
4.2. Thermal Stability of Investigated Alloys
4.3. Mechanical Properties of Investigated Alloys
- Alloys containing up to 10 at.% (Al + Ti) exhibit a YS below 1000 MPa;
- Alloys with 10–20 at.% show a YS in the range of 1000–1500 MPa;
- For concentrations above 20 at.%, the YS ranges between 1500 and 2000 MPa, and in some cases even higher.
5. Conclusions
- With increasing Al and Ti content, the crystal structure evolved from a single FCC phase to a mixture of FCC and BCC phases, and at higher concentrations, to a dual-phase BCC structure (BCC1 + BCC2). The BCC1 phase is strengthened by spherical precipitates rich in Al, Ti, and Ni.
- In alloys containing both BCC1 and BCC2 phases, a relatively low solidus temperature was observed, decreasing progressively with increasing Al and Ti content—from 1191 °C for alloy AT3 to 1182 °C for alloy AT6.
- Homogenization annealing at 1100 °C resulted in enhanced mechanical properties, reflected in the increased yield strength, compressive strength, and ductility, as well as a reduction in the microhardness of individual structural constituents.
- Alloy AT3 exhibited the most balanced combination of strength and ductility, both in the as-cast state and after homogenization annealing at 1100 °C. Compared to other Al- and Ti-alloyed HEAs, it also offers lower production costs due to its relatively lower content of expensive alloying elements such as Ti, Cr, and Ni.
- Homogenization annealing at 1150 °C led to significant microstructural degradation in alloys containing both BCC1 and BCC2 phases, resulting in a marked deterioration of mechanical properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Zhou, Y.; Yu, L.; Zeng, S.; Wang, A.; Fu, H.; Zhang, H.; Zhang, H.; Zhu, Z. Enhancing Strength-Ductility Combination of Fe–Ni–Cr–Al–Ti High-Entropy Alloys via Co-Precipitation of Sigma and L21 Phases. Mater. Sci. Eng. A 2024, 913, 147062. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Wen, L.H.; Kou, H.C.; Li, J.S.; Chang, H.; Xue, X.Y.; Zhou, L. Effect of Aging Temperature on Microstructure and Properties of AlCoCrCuFeNi High-Entropy Alloy. Intermetallics 2009, 17, 266–269. [Google Scholar] [CrossRef]
- Zhu, J.M.; Fu, H.M.; Zhang, H.F.; Wang, A.M.; Li, H.; Hu, Z.Q. Synthesis and Properties of Multiprincipal Component AlCoCrFeNiSix Alloys. Mater. Sci. Eng. A 2010, 527, 7210–7214. [Google Scholar] [CrossRef]
- Liu, X.X.; Ma, S.G.; Song, W.D.; Zhao, D.; Wang, Z.H. Microstructure Evolution and Mechanical Response of Co-Free Ni2CrFeAl0.3Tix High-Entropy Alloys. J. Alloys Compd. 2023, 931, 167523. [Google Scholar] [CrossRef]
- Fu, W.; Zheng, W.; Huang, Y.; Guo, F.; Jiang, S.; Xue, P.; Ren, Y.; Fan, H.; Ning, Z.; Sun, J. Cryogenic Mechanical Behaviors of CrMnFeCoNi High-Entropy Alloy. Mater. Sci. Eng. A 2020, 789, 139579. [Google Scholar] [CrossRef]
- Ding, Q.; Fu, X.; Chen, D.; Bei, H.; Gludovatz, B.; Li, J.; Zhang, Z.; George, E.P.; Yu, Q.; Zhu, T.; et al. Real-Time Nanoscale Observation of Deformation Mechanisms in CrCoNi-Based Medium- to High-Entropy Alloys at Cryogenic Temperatures. Mater. Today 2019, 25, 21–27. [Google Scholar] [CrossRef]
- Praveen, S.; Kim, H.S. High-Entropy Alloys: Potential Candidates for High-Temperature Applications–An Overview. Adv. Eng. Mater. 2018, 20, 1700645. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Wang, W.; Liu, B.; Lv, Y.; Yang, W.; Xu, D.; Liu, Y. A Review on Fundamental of High Entropy Alloys with Promising High–Temperature Properties. J. Alloys Compd. 2018, 760, 15–30. [Google Scholar] [CrossRef]
- Wang, W.-R.; Wang, W.-L.; Wang, S.-C.; Tsai, Y.-C.; Lai, C.-H.; Yeh, J.-W. Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys. Intermetallics 2012, 26, 44–51. [Google Scholar] [CrossRef]
- Mohammadzadeh, R.; Heidarzadeh, A.; Tarık Serindağ, H.; Çam, G. Microstructure and Mechanical Response of Novel Co-Free FeNiMnCrAlTi High-Entropy Alloys. J. Mater. Res. Technol. 2023, 26, 2043–2049. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, W.; Xia, Z.; Xiong, W.; Fu, Z. Influence of Synthesis Method on Microstructure and Mechanical Behavior of Co-Free AlCrFeNi Medium-Entropy Alloy. Intermetallics 2019, 108, 45–54. [Google Scholar] [CrossRef]
- Fedoriková, A.; Petroušek, P.; Kvačkaj, T.; Kočiško, R.; Zemko, M. Development of Mechanical Properties of Stainless Steel 316LN-IG after Cryo-Plastic Deformation. Materials 2023, 16, 6473. [Google Scholar] [CrossRef]
- Petroušek, P.; Kvačkaj, T.; Bidulská, J.; Bidulský, R.; Grande, M.A.; Manfredi, D.; Weiss, K.-P.; Kočiško, R.; Lupták, M.; Pokorný, I. Investigation of the Properties of 316L Stainless Steel after AM and Heat Treatment. Materials 2023, 16, 3935. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Liu, C.T. Anomalous Solidification Microstructures in Co-Free AlxCrCuFeNi2 High-Entropy Alloys. J. Alloys Compd. 2013, 557, 77–81. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhang, Y.; Zhang, A.; Hou, H.; Miao, Z.; Hongliang, D. Microstructure and Mechanical Property of Novel Nanoparticles Strengthened AlCrCuFeNi Dual-Phase High Entropy Alloy. Mater. Today Commun. 2022, 32, 104155. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, K.; Chen, L.; Han, Z.; Wang, T.; Chen, C.; Jiang, J.; Hu, T.; Li, F. Novel Co-Free High Performance TRIP and TWIP Medium-Entropy Alloys at Cryogenic Temperatures. J. Mater. Sci. Technol. 2020, 57, 153–158. [Google Scholar] [CrossRef]
- Luo, S.; Wang, Z.; Nagaumi, H.; Wu, Z. Tailoring the Microstructure and Mechanical Property of Additively Manufactured AlCrCuFeNi3.0 High-Entropy Alloy through Heat Treatment. Mater. Sci. Eng. A 2022, 844, 143192. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, R.-F.; Liu, Z.-X.; Guan, S.-K.; Zhang, H.-S. Microstructure and Properties of Al0.3CrFe1.5MnNi0.5Ti x and Al0.3CrFe1.5MnNi0.5Si x High-Entropy Alloys. Rare Met. 2014, 33, 149–154. [Google Scholar] [CrossRef]
- Wang, Z.; Baker, I.; Guo, W.; Poplawsky, J.D. The Effect of Carbon on the Microstructures, Mechanical Properties, and Deformation Mechanisms of Thermo-Mechanically Treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 High Entropy Alloys. Acta Mater. 2017, 126, 346–360. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Dong, W.; Liu, X.; Lu, Y.; Zhang, Y.; Li, R.; Wang, Y.; Yu, P.; Gao, Y.; et al. Phase Evolution, Microstructure, and Mechanical Behaviors of the CrFeNiAlxTiy Medium-Entropy Alloys. Mater. Sci. Eng. A 2020, 771, 138566. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Jin, X.; Du, X.; Li, B. The Microstructure and High-Temperature Properties of Novel Nano Precipitation-Hardened Face Centered Cubic High-Entropy Superalloys. Scr. Mater. 2018, 146, 226–230. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Tikhonovsky, M.A.; Zherebtsov, S.V. Structure and High Temperature Mechanical Properties of Novel Non-Equiatomic Fe-(Co, Mn)-Cr-Ni-Al-(Ti) High Entropy Alloys. Intermetallics 2018, 102, 140–151. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties. Appl. Phys. Lett. 2007, 90, 181904. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Liu, T.; Tian, D.; Liu, H.; Yang, G.; Lu, Y.; Shoji, T. Microstructure and Mechanical Properties of Co-Free AlCrFeNiTi0.2 Eutectic High-Entropy Alloy. J. Mater. Res. Technol. 2024, 33, 6688–6700. [Google Scholar] [CrossRef]
- Li, S.; Chen, F.; Tang, X.; Ge, G.; Sun, Z.; Geng, Z.; Fan, M.; Huang, P. Effect of Ti on the Microstructure and Mechanical Properties of AlCrFeNiTix Eutectic High-Entropy Alloys. J. Mater. Eng. Perform. 2022, 31, 8294–8303. [Google Scholar] [CrossRef]
- Wei, C.; Du, X.; Lu, Y.; Jiang, H.; Li, T.; Wang, T. Novel As-Cast AlCrFe2Ni2Ti05 High-Entropy Alloy with Excellent Mechanical Properties. Int. J. Miner. Met. Mater. 2020, 27, 1312–1317. [Google Scholar] [CrossRef]
- Kočiško, R.; Petroušek, P.; Saksl, K.; Petryshynets, I.; Milkovič, O.; Csík, D. The Influence of Ti and Al on the Evolution of Microstructure and Mechanical Properties in Medium-Entropy and High-Entropy Alloys Based on AlxTixCrFe2Ni2. Materials 2025, 18, 1382. [Google Scholar] [CrossRef]
- ASTM E3-11; Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 2011.
- ISO 6507-1:2023; Metallic Materials—Vickers Hardness Test. International Organization for Standardization: Geneva, Switzerland, 2023.
- Wei, C.; Li, L.; Lu, Y.; Du, X.; Wang, T. Evolution of Microstructure and Mechanical Properties of As-Cast AlxCrFe2Ni2 High-Entropy Alloys with Al Content. Met. Mater. Trans. A 2021, 52, 1850–1860. [Google Scholar] [CrossRef]
- Jiang, L.; Jiang, H.; Lu, Y.; Wang, T.; Cao, Z.; Li, T. Mechanical Properties Improvement of AlCrFeNi2Ti0.5 High Entropy Alloy through Annealing Design and Its Relationship with Its Particle-Reinforced Microstructures. J. Mater. Sci. Technol. 2015, 31, 397–402. [Google Scholar] [CrossRef]
- Liu, S.; Gao, M.C.; Liaw, P.K.; Zhang, Y. Microstructures and Mechanical Properties of AlxCrFeNiTi0.25 Alloys. J. Alloys Compd. 2015, 619, 610–615. [Google Scholar] [CrossRef]
- Li, Y.; Xie, J.; Zhang, Z.; Zhang, X.; Ren, X.; Chen, L. Effect of Homogenization Annealing on Microstructure and Mechanical Properties of AlMo0.5NbTa0.5TiZr Refractory High Entropy Alloy Manufactured by Laser Metal Deposition. Mater. Charact. 2025, 225, 115119. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Yeh, A.-C. The Evolution of Microstructures and High Temperature Properties of AlxCo1.5CrFeNi1.5Tiy High Entropy Alloys. J. Alloys Compd. 2015, 653, 379–385. [Google Scholar] [CrossRef]
- Saboktakin Rizi, M.; Ebrahimian, M.; Minouei, H.; Shim, S.H.; Pouraliakbar, H.; Fallah, V.; Park, N.; Hong, S.I. Enhancing Mechanical Properties in Ti-Containing FeMn40Co10Cr10C0.5 High-Entropy Alloy through Chi (χ) Phase Dissolution and Precipitation Hardening. Mater. Lett. 2024, 377, 137516. [Google Scholar] [CrossRef]
- Peng, H.; Hu, L.; Baker, I. Effects of Thermo-Mechanical Treatment on the Microstructures and Mechanical Properties of a Medium-Entropy Alloy. High Entropy Alloys Mater. 2023, 1, 295–311. [Google Scholar] [CrossRef]
- Rezaee, A.; Ketabchi, M.; Shams, S.A.A.; Jafarian, H.R.; Lee, C.S. Characteristics of the Cold-Rolled Multi-Phase Cr30Fe30Ni15Co10Cu10Ti5 High-Entropy Alloy. Met. Mater. Int. 2023, 29, 1366–1381. [Google Scholar] [CrossRef]
- Wang, M.; Wen, Z.; Liang, L.; Chen, W.; Mo, H.; Wei, G.; Zhao, Y. Excellent Combination of Compressive Strength and Strain of AlCrFeNi MPEAs via Adding Ti and V. J. Alloys Compd. 2023, 947, 169560. [Google Scholar] [CrossRef]
- Lu, W.; Yan, K.; Luo, X.; Wang, Y.; Hou, L.; Li, P.; Huang, B.; Yang, Y. Superb Strength and Ductility Balance of a Co-Free Medium-Entropy Alloy with Dual Heterogeneous Structures. J. Mater. Sci. Technol. 2022, 98, 197–204. [Google Scholar] [CrossRef]
- Yeh, J.-W. Overview of High-Entropy Alloys. In High-Entropy Alloys: Fundamentals and Applications; Gao, M.C., Yeh, J.-W., Liaw, P.K., Zhang, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–19. ISBN 978-3-319-27013-5. [Google Scholar]
- Guo, S.; Liu, C.T. Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of Valence Electron Concentration on Stability of Fcc or Bcc Phase in High Entropy Alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef]
- Peng, S.; Wang, S.; Hao, Z.; Wang, D.; Shu, D. Hierarchical Coherent Precipitates Lead to High Tensile Strength in Casting BCC-Structured Al0.8CrNiMn2Fe2.5 High-Entropy Alloy. J. Mater. Res. Technol. 2025, 36, 903–912. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Z.; Chen, W.; Fan, H.; Fu, Z. Microstructural Evolution and Mechanical Behavior of Co-Free (Fe40Ni30Cr20Al10)100−x Ti x High-Entropy Alloys. Adv. Eng. Mater. 2023, 25, 2300946. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, W.; Chu, C.; Fu, Z.; Ivanisenko, J.; Wang, H.; Peng, S.; Lu, Y.; Lavernia, E.J.; Hahn, H. Directly Cast Fibrous Heterostructured FeNi0.9Cr0.5Al0.4 High Entropy Alloy with Low-Cost and Remarkable Tensile Properties. Scr. Mater. 2023, 230, 115421. [Google Scholar] [CrossRef]
- Nguyen, C.; Tieu, A.K.; Deng, G.; Wexler, D.; Vo, T.D.; Wang, L.; Yang, J. Tribological Performance of a Cost-Effective CrFeNiAl0.3Ti0.3 High Entropy Alloy Based Self-Lubricating Composite in a Wide Temperature Range. Tribol. Int. 2022, 174, 107743. [Google Scholar] [CrossRef]
- Guo, S. Phase Selection Rules for Cast High Entropy Alloys: An Overview. Mater. Sci. Technol. 2015, 31, 1223–1230. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Wang, W.-R.; Wang, W.-L.; Yeh, J.-W. Phases, Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloys at Elevated Temperatures. J. Alloys Compd. 2014, 589, 143–152. [Google Scholar] [CrossRef]
- Chen, X.; Qi, J.Q.; Sui, Y.W.; He, Y.Z.; Wei, F.X.; Meng, Q.K.; Sun, Z. Effects of Aluminum on Microstructure and Compressive Properties of Al-Cr-Fe-Ni Eutectic Multi-Component Alloys. Mater. Sci. Eng. A 2017, 681, 25–31. [Google Scholar] [CrossRef]
- Joseph, J.; Annasamy, M.; Kada, S.R.; Hodgson, P.D.; Barnett, M.R.; Fabijanic, D.M. Optimising the Al and Ti Compositional Window for the Design of γ’ (L12)-Strengthened Al–Co–Cr–Fe–Ni–Ti High Entropy Alloys. Mater. Sci. Eng. A 2022, 835, 142620. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, K.; Gargani, M.; Xiong, W. A Comparative Analysis of Inconel 718 Made by Additive Manufacturing and Suction Casting: Microstructure Evolution in Homogenization. Addit. Manuf. 2020, 36, 101404. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, Y.L.; Tong, Y.; Jiao, Z.B.; Wei, J.; Cai, J.X.; Han, X.D.; Chen, D.; Hu, A.; Kai, J.J.; et al. Multicomponent Intermetallic Nanoparticles and Superb Mechanical Behaviors of Complex Alloys. Science 2018, 362, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Jain, H.; Shadangi, Y.; Singh, L.K.; Dubey, A.K.; Mukhopadhyay, N.K. Dual-Phase Fe40Mn20Cr15Ti10Al10Ni5 High-Entropy Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering: Alloying Behavior, Thermal Stability, and Mechanical Properties. J. Mater. Res. 2025, 40, 123–139. [Google Scholar] [CrossRef]
- Shaysultanov, D.G.; Salishchev, G.A.; Ivanisenko, Y.V.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Stepanov, N.D. Novel Fe36Mn21Cr18Ni15Al10 High Entropy Alloy with Bcc/B2 Dual-Phase Structure. J. Alloys Compd. 2017, 705, 756–763. [Google Scholar] [CrossRef]
Microstructure | Lattice Constant (Å) | |||||
---|---|---|---|---|---|---|
Samples | AT1 | AT2 | AT3 | AT4 | AT5 | AT6 |
FCC | 3.604 ± 2 × 10−3 | 3.614 ± 4 × 10−3 | 3.613 ± 2 × 10−3 | - | - | - |
BCC1 | - | 2.877 ± 2 × 10−3 | 2.878 ± 4 × 10−3 | 2.879 ± 3 × 10−3 | 2.882 ± 3 × 10−3 | 2.884 ± 4 × 10−3 |
BCC2 | - | 2.942 ± 4 × 10−3 | 2.937 ± 2 × 10−3 | 2.939 ± 3 × 10−3 | 2.943 ± 3 × 10−3 | 2.941 ± 5 × 10−3 |
Alloys | Region | Chemical Composition (at. %) | ||||
---|---|---|---|---|---|---|
Al | Ti | Cr | Fe | Ni | ||
AT1 | Nominal | 2.4 | 2.4 | 23.8 | 47.6 | 23.8 |
Actual | 2.9 | 2.4 | 24.1 | 47.2 | 23.4 | |
DR-FCC | 2.4 | 1.5 | 24.4 | 50.0 | 21.7 | |
ID-BCC1 | 2.0 | 12.3 | 27.6 | 37.6 | 20.5 | |
AT2 | Nominal | 4.6 | 4.6 | 22.7 | 45.5 | 22.7 |
Actual | 4.9 | 4.9 | 22.3 | 44.2 | 23.7 | |
DR-FCC | 5.1 | 3.8 | 21.7 | 45.5 | 23.9 | |
ID-BCC1 | 7.9 | 6.2 | 25.8 | 40.9 | 19.3 | |
ID-precipitate | 14.2 | 10.2 | 19.2 | 29.7 | 26.6 | |
AT3 | Nominal | 6.5 | 6.5 | 21.7 | 43.5 | 21.7 |
Actual | 7.2 | 7.5 | 19.9 | 41.4 | 24.0 | |
DR-BCC2 | 6.7 | 12.2 | 13.8 | 35.0 | 32.2 | |
ID-BCC1 | 6.2 | 5.4 | 22.7 | 45.0 | 20.6 | |
ID-precipitate | 15.8 | 13.7 | 12.4 | 25.1 | 33.1 | |
AT4 | Nominal | 8.3 | 8.3 | 20.8 | 41.7 | 20.8 |
Actual | 9.6 | 9.2 | 20.0 | 38.5 | 22.6 | |
DR-BCC2 | 23.0 | 18.1 | 4.7 | 16.2 | 38.0 | |
ID-BCC1 | 8.9 | 7.4 | 22.3 | 41.2 | 20.1 | |
ID-precipitate | 14.5 | 14.9 | 11.8 | 25.4 | 33.5 | |
AT5 | Nominal | 10.0 | 10.0 | 20.0 | 40.0 | 20.0 |
Actual | 11.3 | 11.1 | 19.3 | 37.4 | 20.9 | |
DR-BCC2 | 22.9 | 18.4 | 5.1 | 17.3 | 36.3 | |
ID-BCC1 | 9.3 | 7.2 | 23.8 | 44.0 | 15.7 | |
ID-precipitate | 18.2 | 16.2 | 10.2 | 23.6 | 31.9 | |
AT6 | Nominal | 11.5 | 11.5 | 19.2 | 38.5 | 19.2 |
Actual | 13.3 | 12.4 | 18.3 | 36.4 | 19.6 | |
DR-BCC2 | 23.3 | 18.4 | 5.9 | 19.7 | 32.8 | |
ID-BCC1 | 11.6 | 9.5 | 21.9 | 40.4 | 16.6 | |
ID-precipitate | 21.2 | 15.9 | 9.4 | 23.0 | 30.5 |
AT1 | AT2 | AT3 | AT4 | AT5 | AT6 | |
---|---|---|---|---|---|---|
411 | 586 | 1207 | 1313 | 1450 | 1570 | |
2044 | 2598 | 3240 | 2895 | 2291 | 2011 | |
54 | 51 | 39 | 31 | 24 | 9 |
Microstructure | Lattice Constant (Å) | ||||||
---|---|---|---|---|---|---|---|
Samples | AT1 | AT2 | AT3 | AT4 | AT5 | AT6 | |
HT1 | FCC | 3.606 ± 4 × 10−3 | 3.625 ± 3 × 10−3 | 3.620 ± 3 × 10−3 | - | - | - |
BCC1 | - | 2.879 ± 3 × 10−3 | 2.877 ± 2 × 10−3 | 2.878 ± 2 × 10−3 | 2.882 ± 3 × 10−3 | 2.882 ± 3 × 10−3 | |
BCC2 | - | 2.932 ± 2 × 10−3 | 2.932 ± 2 × 10−3 | 2.934 ± 3 × 10−3 | 2.937 ± 2 × 10−3 | 2.937 ± 3 × 10−3 | |
HT2 | FCC | 3.608 ± 2 × 10−3 | 3.621 ± 4 × 10−3 | 3.613 ± 2 × 10−3 | - | - | - |
BCC1 | - | 2.880 ± 3 × 10−3 | 2.876 ± 4 × 10−3 | 2.878 ± 3 × 10−3 | 2.882 ± 2 × 10−3 | 2.886 ± 2 × 10−3 | |
BCC2 | - | 2.938 ± 2 × 10−3 | 2.929 ± 5 × 10−3 | 2.930 ± 3 × 10−3 | 2.936 ± 3 × 10−3 | 2.937 ± 2 × 10−3 |
Alloys | Region | Chemical Composition (at. %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ti | Cr | Fe | Ni | |||||||
HT1 | HT2 | HT1 | HT2 | HT1 | HT2 | HT1 | HT2 | HT1 | HT2 | ||
AT1 | Actual | 2.7 | 2.7 | 2.5 | 2.5 | 23.8 | 23.7 | 47.6 | 47.5 | 23.4 | 23.6 |
AT2 | Actual | 5.0 | 5.2 | 4.6 | 4.9 | 22.4 | 22.2 | 45.8 | 44.9 | 22.3 | 22.8 |
DR-FCC | 4.8 | 5.1 | 4.6 | 4.3 | 22.0 | 21.7 | 45.3 | 45.0 | 23.4 | 24.0 | |
ID-BCC1 | 5.8 | 5.7 | 5.2 | 5.3 | 26.8 | 24.6 | 44.2 | 43.7 | 18.0 | 20.7 | |
ID-precipitate | 9.8 | 4.0 | 6.4 | 4.0 | 24.3 | 27.2 | 37.9 | 47.8 | 21.5 | 17.0 | |
AT3 | Actual | 8.0 | 6.9 | 7.1 | 6.8 | 21.7 | 21.6 | 42.5 | 42.5 | 20.8 | 22.2 |
DR-BCC2 | 7.2 | 5.1 | 5.8 | 13.7 | 18.3 | 13.8 | 42.4 | 36.2 | 26.3 | 31.2 | |
ID-BCC1 | 7.2 | 6.7 | 7.4 | 4.9 | 21.8 | 23.5 | 41.9 | 45.3 | 21.7 | 19.6 | |
ID-precipitate | 13.6 | 6.8 | 9.5 | 5.6 | 17.0 | 22.5 | 32.7 | 45.2 | 27.2 | 20.0 | |
AT4 | Actual | 9.5 | 4.4 | 8.3 | 7.3 | 20.6 | 20.4 | 40.2 | 44.4 | 21.5 | 23.6 |
DR-BCC2 | 23.6 | 1.7 | 19.0 | 9.4 | 3.4 | 14.7 | 13.6 | 43.0 | 40.5 | 31.2 | |
ID-BCC1 | 8.4 | 4.1 | 7.1 | 5.5 | 21.6 | 22.9 | 42.5 | 46.9 | 20.5 | 20.6 | |
ID-precipitate | 6.5 | 3.3 | 5.9 | 6.2 | 23.4 | 22.1 | 45.7 | 47.5 | 18.5 | 20.8 | |
AT5 | Actual | 10.8 | 5.6 | 9.9 | 9.4 | 18.9 | 19.4 | 38.6 | 42.1 | 21.8 | 23.6 |
DR-BCC2 | 23.9 | 1.7 | 19.7 | 15.1 | 3.5 | 13.8 | 14.3 | 41.9 | 38.5 | 27.6 | |
ID-BCC1 | 7.7 | 5.6 | 7.7 | 6.5 | 22.6 | 23.1 | 44.1 | 45.3 | 18.0 | 19.6 | |
ID-precipitate | 13.3 | 7.4 | 10.3 | 9.3 | 17.3 | 17.9 | 34.2 | 37.6 | 24.9 | 27.8 | |
AT6 | Actual | 12.2 | 6.5 | 12.3 | 11.5 | 18.2 | 18.9 | 36.3 | 39.8 | 21.1 | 23.3 |
DR-BCC2 | 23.8 | 1.8 | 21.0 | 16.7 | 3.5 | 14.5 | 15.5 | 44.5 | 36.3 | 22.5 | |
ID-BCC1 | 7.3 | 6.8 | 7.4 | 7.6 | 25.1 | 23.0 | 47.5 | 43.6 | 12.7 | 19.0 | |
ID-precipitate | 10.3 | 7.5 | 9.3 | 13.3 | 21.2 | 15.6 | 41.0 | 36.7 | 18.2 | 27.0 |
AT1 | AT2 | AT3 | AT4 | AT5 | AT6 | ||
---|---|---|---|---|---|---|---|
HT1 | 368 | 532 | 1510 | 1471 | 1641 | 1665 | |
2059 | 2466 | 3316 | 2997 | 2700 | 3120 | ||
62 | 53 | 45 | 27 | 30 | 25 | ||
HT2 | 385 | 620 | 1440 | 1572 | |||
2170 | 2500 | 3148 | 2079 | ||||
60 | 48 | 36 | 15 |
Alloys | δ % | ΔHmix, kJ·mol−1 | ΔSmix, J·mol−1·K−1 | Ω, - | VEC - | Tm °C |
---|---|---|---|---|---|---|
AT1 | 3.62 | −6.20 | 1.23 R | 3.04 | 7.75 | 1312 |
AT2 | 4.77 | −8.78 | 1.33 R | 2.30 | 7.59 | 1235 |
AT3 | 5.67 | −11.58 | 1.41 R | 1.83 | 7.42 | 1191 |
AT4 | 6.19 | −13.48 | 1.47 R | 1.62 | 7.20 | 1191 |
AT5 | 6.58 | −15.03 | 1.50 R | 1.47 | 7.02 | 1187 |
AT6 | 6.85 | −16.34 | 1.53 R | 1.36 | 6.86 | 1182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kočiško, R.; Milkovič, O.; Petroušek, P.; Sučik, G.; Csík, D.; Saksl, K.; Petryshynets, I.; Kovaľ, K.; Diko, P. Microstructural and Mechanical Characterization of Co-Free AlxTixCrFe2Ni High-Entropy Alloys. Metals 2025, 15, 896. https://doi.org/10.3390/met15080896
Kočiško R, Milkovič O, Petroušek P, Sučik G, Csík D, Saksl K, Petryshynets I, Kovaľ K, Diko P. Microstructural and Mechanical Characterization of Co-Free AlxTixCrFe2Ni High-Entropy Alloys. Metals. 2025; 15(8):896. https://doi.org/10.3390/met15080896
Chicago/Turabian StyleKočiško, Róbert, Ondrej Milkovič, Patrik Petroušek, Gabriel Sučik, Dávid Csík, Karel Saksl, Ivan Petryshynets, Karol Kovaľ, and Pavel Diko. 2025. "Microstructural and Mechanical Characterization of Co-Free AlxTixCrFe2Ni High-Entropy Alloys" Metals 15, no. 8: 896. https://doi.org/10.3390/met15080896
APA StyleKočiško, R., Milkovič, O., Petroušek, P., Sučik, G., Csík, D., Saksl, K., Petryshynets, I., Kovaľ, K., & Diko, P. (2025). Microstructural and Mechanical Characterization of Co-Free AlxTixCrFe2Ni High-Entropy Alloys. Metals, 15(8), 896. https://doi.org/10.3390/met15080896