Electrochemical Behavior of Thermomechanically Processed UNS S41003 Steel in Acidic Chloride Media: Assessing Martensitic Transformation Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microstructural Characterization Parameters
2.3. Electrochemical Analyses Parameters
2.4. Oxide Film Characterization
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Electrochemical Analyses
3.2.1. Open Circuit Potential (OCP)
3.2.2. Potentiodynamic Polarization
3.2.3. Cyclic Polarization
3.2.4. Electrochemical Impedance Spectroscopy
3.2.5. Proposed Equivalent Circuit Model
3.2.6. Chronoamperometry
3.3. Oxide Film Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Messinese, E.; Casanova, L.; Paterlini, L.; Capelli, F.; Bolzoni, F.; Ormellese, M.; Brenna, A. A Comprehensive Investigation on the Effects of Surface Finishing on the Resistance of Stainless Steel to Localized Corrosion. Metals 2022, 12, 1751. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent Developments in Stainless Steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Zaffora, A.; Di Franco, F.; Megna, B.; Santamaria, M. One-Step Electrodeposition of Superhydrophobic Coating on 316l Stainless Steel. Metals 2021, 11, 1867. [Google Scholar] [CrossRef]
- Cashell, K.A.; Baddoo, N.R. Ferritic Stainless Steels in Structural Applications. Thin-Walled Struct. 2014, 83, 169–181. [Google Scholar] [CrossRef]
- Pimenta, A.R.; Loureiro, R.C.P.; Breves, I.M.S.; Perez, G.; Tavares, S.S.M. Microstructural Characterization of Low Carbon UNS S41003 Stainless Steel with Different Processing Routes (Hot Rolling and Annealing). Metallogr. Microstruct. Anal. 2024, 13, 880–890. [Google Scholar] [CrossRef]
- Yu, Y.; Shironita, S.; Souma, K.; Umeda, M. Effect of Chromium Content on the Corrosion Resistance of Ferritic Stainless Steels in Sulfuric Acid Solution. Heliyon 2018, 4, e00958. [Google Scholar] [CrossRef] [PubMed]
- Lúcio de Faria, G.; Godefroid, L.B.; Nunes, I.P.; Carlos de Lacerda, J. Effect of Martensite Volume Fraction on the Mechanical Behavior of an UNS S41003 Dual-Phase Stainless Steel. Mater. Sci. Eng. A 2020, 797, 140208. [Google Scholar] [CrossRef]
- Campbell, F.C. (Ed.) Elements of Metallurgy and Engineering Alloys, 1st ed.; ASM International: Almere, The Netherlands, 2008. [Google Scholar]
- Lalthazuala, R.; Darunkumar Singh, K. Structural Behaviour of Hybrid Stainless Steel Stub Columns under Axial Compression. Structures 2020, 27, 128–140. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Z.; Hu, S.; Li, X.; Du, C. Effect of PH and Hydrogen on the Stress Corrosion Cracking Behavior of Duplex Stainless Steel in Marine Atmosphere Environment. Ocean. Eng. 2017, 146, 311–323. [Google Scholar] [CrossRef]
- Pessu, F.; Barker, R.; Neville, A. The Influence of PH on Localized Corrosion Behavior of X65 Carbon Steel in CO2-Saturated Brines. Corrosion 2015, 71, 1452–1466. [Google Scholar] [CrossRef]
- Loto, R.T. Study of the Corrosion Behaviour of S32101 Duplex and 410 Martensitic Stainless Steel for Application in Oil Refinery Distillation Systems. J. Mater. Res. Technol. 2017, 6, 203–212. [Google Scholar] [CrossRef]
- Bahadori, A. Engineering and Technical Guidelines for Painting. In Essentials of Coating, Painting, and Lining for the Oil, Gas and Petrochemical Industries; Elsevier: Amsterdam, The Netherlands, 2015; pp. 107–156. [Google Scholar]
- Fortes, J.C.; Dávila, J.M.; Sarmiento, A.M.; Luís, A.T.; Santisteban, M.; Díaz-Curie, J.; Córdoba, F.; Grande, J.A. Corrosion of Metallic and Structural Elements Exposed to Acid Mine Drainage (AMD). Mine Water Environ. 2020, 39, 195–203. [Google Scholar] [CrossRef]
- Visgilio, G.R.; Dawson, J.; Siver, P.A.; Whitelaw, D.M. Acid in the Environment: An Overview. In Acid in the Environment; Springer: Boston, MA, USA, 2007; pp. 1–12. [Google Scholar]
- ASTM Committee G-1 on Corrosion of Metals. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- E28 Committee. Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2023. [Google Scholar]
- Olson, D.L.; Siewert, T.A.; Liu, S.; Edwards, G.R. (Eds.) Welding, Brazing, and Soldering; ASM International: Almere, The Netherlands, 1993. [Google Scholar]
- Sundqvist, J.; Kaplan, A.F.H. Sensitisation Behaviour of Drop-Deposited 11% Cr Ferritic Stainless Steel. Opt. Laser Technol. 2018, 108, 487–495. [Google Scholar] [CrossRef]
- de Barros Machado Vilela, L.; de Faria, G.L.; de Alcântara Aperam, C.M.; de Oliveira, T.R.; Cota, A. Efeito da taxa de resfriamento sobre a formação de martensita em um aço inoxidável ferrítico com 11 %Cr e baixos teores de intersticiais. Matéria 2019, 24, e-12280. [Google Scholar] [CrossRef]
- Alves, J.M.; Brandão, L.P.; Paula, A.D.S. Mechanically Induced Martensitic Transformation of Hot Rolled and Annealed 304L Austenitic Stainless Steel at Room and Cryogenic Temperatures. Mater. Res. 2019, 22 (Suppl. 1), e20190150. [Google Scholar] [CrossRef]
- Krauss, G. Quench and Tempered Martensitic Steels. Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Rosen, E.M.; Silverman, D.C. Corrosion Prediction from Polarization Scans Using an Artificial Neural Network Integrated with an Expert System. Corrosion 1992, 48, 734–745. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, S.; Dou, Y.; Han, S.; Wang, L.; Man, C.; Wang, X.; Chen, S.; Cheng, Y.F.; Li, X. Passivation Behavior and Surface Chemistry of 2507 Super Duplex Stainless Steel in Artificial Seawater: Influence of Dissolved Oxygen and PH. Corros. Sci. 2019, 150, 218–234. [Google Scholar] [CrossRef]
- Elsner, B.; Rossi, A.M. Effect of PH on Electrochemical Behaviour and Passive Film Composition of Stainless Steels. Mater. Sci. Forum 1995, 192, 225–236. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Z.-Q.; Zhang, L.; Hu, J.-Y.; Zhang, Z.-R.; Lu, M.-X. Effect of PH on the Electrochemical Behaviour and Passive Film Composition of 316L Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 585–598. [Google Scholar] [CrossRef]
- Ghahremaninezhad, A.; Wang, W.; Asselin, E.; Budac, J.; Alfantazi, A. Electrochemical and Corrosion Behaviour of Stainless Steels 316L and 317L in Chloridised Ammonium Sulphate Solution. Can. Metall. Q. 2012, 51, 471–484. [Google Scholar] [CrossRef]
- Wang, L.; Dong, C.; Man, C.; Hu, Y.; Yu, Q.; Li, X. Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review. Int. J. Miner. Metall. Mater. 2021, 28, 754–773. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Z.; Feng, H.; Wang, Q.; Zhang, W.; Fan, G.; Li, G.; Wang, L. Electrochemical Corrosion Characteristics of Super Duplex Stainless Steel S32750 in LT-MED Environment. Int. J. Electrochem. Sci. 2015, 10, 1616–1631. [Google Scholar] [CrossRef]
- Galvele, J.R. Transport Processes in Passivity Breakdown—II. Full Hydrolysis of the Metal Ions. Corros. Sci. 1981, 21, 551–579. [Google Scholar] [CrossRef]
- Choudhary, S.; Kelly, R.G.; Birbilis, N. On the Origin of Passive Film Breakdown and Metastable Pitting for Stainless Steel 316L. Corros. Sci. 2024, 230, 111911. [Google Scholar] [CrossRef]
- Parangusan, H.; Bhadra, J.; Al-Thani, N. A Review of Passivity Breakdown on Metal Surfaces: Influence of Chloride- and Sulfide-Ion Concentrations, Temperature, and PH. Emergent Mater. 2021, 4, 1187–1203. [Google Scholar] [CrossRef]
- Al Saadi, S.; Yi, Y.; Cho, P.; Jang, C.; Beeley, P. Passivity Breakdown of 316L Stainless Steel during Potentiodynamic Polarization in NaCl Solution. Corros. Sci. 2016, 111, 720–727. [Google Scholar] [CrossRef]
- Esmailzadeh, S.; Aliofkhazraei, M.; Sarlak, H. Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review. Prot. Met. Phys. Chem. Surf. 2018, 54, 976–989. [Google Scholar] [CrossRef]
- Cotolan, N.; Pop, A.; Marconi, D.; Ponta, O.; Muresan, L.M. Corrosion Behavior of TiO2-coated Ti–6Al–7Nb Surfaces Obtained by Anodic Oxidation in Sulfuric or Acetic Acid. Mater. Corros. 2015, 66, 635–642. [Google Scholar] [CrossRef]
- Lodhi, M.J.K.; Deen, K.M.; Haider, W. Corrosion Behavior of Additively Manufactured 316L Stainless Steel in Acidic Media. Materialia 2018, 2, 111–121. [Google Scholar] [CrossRef]
- Kumagai, M.; Myung, S.T.; Kuwata, S.; Asaishi, R.; Yashiro, H. Corrosion Behavior of Austenitic Stainless Steels as a Function of PH for Use as Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells. Electrochim. Acta 2008, 53, 4205–4212. [Google Scholar] [CrossRef]
- Fu, J.; Wang, J.; Li, F.; Cui, K.; Du, X.; Wu, Y. Effect of Nb Addition on the Microstructure and Corrosion Resistance of Ferritic Stainless Steel. Appl. Phys. A 2020, 126, 194. [Google Scholar] [CrossRef]
- Polo, J.L.; Cano, E.; Bastidas, J.M. An Impedance Study on the Influence of Molybdenum in Stainless Steel Pitting Corrosion. J. Electroanal. Chem. 2002, 537, 183–187. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Vafaeian, S. Effect of Solution PH on the Electrochemical Behaviour of AISI 304 Austenitic and AISI 430 Ferritic Stainless Steels in Concentrated Acidic Media. Egypt. J. Pet. 2015, 24, 333–341. [Google Scholar] [CrossRef]
- Chaves, R.; Costa, I.; De Melo, H.G.; Wolynec, S. Evaluation of Selective Corrosion in UNS S31803 Duplex Stainless Steel with Electrochemical Impedance Spectroscopy. Electrochim. Acta 2006, 51, 1842–1846. [Google Scholar] [CrossRef]
- Bautista, A.; González-Centeno, A.; Blanco, G.; Guzmán, S. Application of EIS to the Study of Corrosion Behaviour of Sintered Ferritic Stainless Steels before and after High-Temperature Exposure. Mater. Charact. 2008, 59, 32–39. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Souza, C.A.C.; Abrantes, J.C.C. Use of Electrochemical Impedance Spectroscopy (EIS) to Monitoring the Corrosion of Reinforced Concrete. Rev. IBRACON Estrut. Mater. 2015, 8, 529–546. [Google Scholar] [CrossRef]
- Blanco, G.; Bautista, A.; Takenouti, H. EIS Study of Passivation of Austenitic and Duplex Stainless Steels Reinforcements in Simulated Pore Solutions. Cem. Concr. Compos. 2006, 28, 212–219. [Google Scholar] [CrossRef]
- Arena, F.A.; Suegama, P.H.; Bevilaqua, D.; Dos Santos, A.L.A.; Fugivara, C.S.; Benedetti, A.V. Simulating the Main Stages of Chalcopyrite Leaching and Bioleaching in Ferrous Ions Solution: An Electrochemical Impedance Study with a Modified Carbon Paste Electrode. Miner. Eng. 2016, 92, 229–241. [Google Scholar] [CrossRef]
- Satpati, A.K.; Ravindran, P.V. Electrochemical Study of the Inhibition of Corrosion of Stainless Steel by 1,2,3-Benzotriazole in Acidic Media. Mater. Chem. Phys. 2008, 109, 352–359. [Google Scholar] [CrossRef]
- Tang, J.; Yang, X.; Wang, Y.; Wang, H.; Xiao, Y.; Apreutesei, M.; Nie, Z.; Normand, B. Corrosion Behavior of 2205 Duplex Stainless Steels in HCl Solution Containing Sulfide. Metals 2019, 9, 294. [Google Scholar] [CrossRef]
- Kandala, S.R.; Balani, K.; Upadhyaya, A. Mechanical and Electrochemical Characterization of Supersolidus Sintered Austenitic Stainless Steel (316 L). High Temp. Mater. Process. 2019, 38, 792–805. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of Effective Capacitance and Film Thickness from Constant-Phase-Element Parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, Z.; Zagidulin, D.; Noël, J.J.; Shoesmith, D.W. Effect of Oxide Film Properties on the Kinetics of O 2 Reduction on Alloy C-22. J. Electrochem. Soc. 2017, 164, C911–C917. [Google Scholar] [CrossRef]
- Ai, Z.; Sun, W.; Jiang, J.; Song, D.; Ma, H.; Zhang, J.; Wang, D. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of PH and Chloride. Materials 2016, 9, 749. [Google Scholar] [CrossRef]
- Harrington, S.P.; Devine, T.M. Analysis of Electrodes Displaying Frequency Dispersion in Mott-Schottky Tests. J. Electrochem. Soc. 2008, 155, C381. [Google Scholar] [CrossRef]
- Dean, M.H.; Stimming, U. Capacity of Semiconductor Electrodes with Multiple Bulk Electronic States Part I. Model and Calculations for Discrete States. J. Electroanal. Chem. Interfacial. Electrochem. 1987, 228, 135–151. [Google Scholar] [CrossRef]
- Von Wandruszka, R.; Orchard, S.W.; Greeff, A. Corrosion Measurements by Potential-Step Chronoamperometry. Talanta 1985, 32, 307–311. [Google Scholar] [CrossRef]
- Gharib, A.; Arab, A. Electrodeposited Pd, PdCd, and PdBi Nanostructures: Preparation, Characterization, Corrosion Behavior, and Their Electrocatalytic Activities for Formic Acid Oxidation. J. Electroanal. Chem. 2020, 866, 114166. [Google Scholar] [CrossRef]
- Gao, B.; Xu, T.; Wang, L.; Liu, Y.; Liu, J.; Zhang, Y.; Sui, Y.; Sun, W.; Chen, X.; Li, X.; et al. Achieving a superior combination of tensile properties and corrosion resistance in AISI420 martensitic stainless steel by low-temperature tempering. Corros. Sci. 2023, 225, 111551. [Google Scholar] [CrossRef]
- Oblonsky, L.J.; Devine, T.M. A Surface Enhanced Raman Spectroscopic Study of the Passive Films Formed in Borate Buffer on Iron, Nickel, Chromium and Stainless Steel. Corros. Sci. 1995, 37, 17–41. [Google Scholar] [CrossRef]
- Gumuslu, T.; Kaba, M.; Atar, E.; Cimenoglu, H. Effect of Testing Temperature on the Impact-Sliding Wear Behaviour of a 316L Austenitic Stainless Steel. Mater. Today Proc. 2023, 81, 81–86. [Google Scholar] [CrossRef]
- Zheng, J.X.; OuYang, S.Q.; Feng, L.; Sun, J.J.; Xuan, Z.W.; Fang, J.H. In-Situ Raman Spectroscopic Studies on Electrochemical Oxidation Behavior of Chromium in Alkaline Solution. J. Electroanal. Chem. 2022, 921, 116682. [Google Scholar] [CrossRef]
- Nuggehalli Sampathkumar, S.; Ferriday, T.B.; Middleton, P.H.; Van Herle, J. Activation of Stainless Steel 316L Anode for Anion Exchange Membrane Water Electrolysis. Electrochem. Commun. 2023, 146, 107418. [Google Scholar] [CrossRef]
- Graedel, T.E.; Frankenthal, R.P. Corrosion Mechanisms for Iron and Low Alloy Steels Exposed to the Atmosphere. J. Electrochem. Soc. 1990, 137, 2385–2394. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Venâncio Silva, S.; De Oliveira, M.T. Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Dunn, D.S.; Bogart, M.B.; Brossia, C.S.; Cragnolino, G.A. Corrosion of Iron Under Alternating Wet and Dry Conditions. Corrosion 2000, 56, 470–481. [Google Scholar] [CrossRef]
- Copeland-Johnson, T.M.; Nyamekye, C.K.A.; Ecker, L.; Bowler, N.; Smith, E.A.; Rebak, R.B.; Gill, S.K. Multi-Modal Analysis of Oxidation on Fe-Cr-Ni Austenitic Stainless Steel 304 Exposed to beyond-Design Basis Temperatures. Corros. Sci. 2023, 218, 111167. [Google Scholar] [CrossRef]
- Zamanizadeh, H.R.; Sunde, S.; Pollet, B.G.; Seland, F. Tailoring the Oxide Surface Composition of Stainless Steel for Improved OER Performance in Alkaline Water Electrolysis. Electrochim. Acta 2022, 424, 140561. [Google Scholar] [CrossRef]
- Xiao, Y.; Tang, J.; Wang, Y.; Lin, B.; Nie, Z.; Li, Y.; Normand, B.; Wang, H. Corrosion Behavior of 2205 Duplex Stainless Steel in NaCl Solutions Containing Sulfide Ions. Corros. Sci. 2022, 200, 110240. [Google Scholar] [CrossRef]
Alloy | C | Mn | Si | Cr | Ni | P | S | W | Fe |
---|---|---|---|---|---|---|---|---|---|
410F | 0.03 | 0.517 | 0.727 | 10.90 | 0.376 | 0.064 | 0.014 | 0.054 | bal. |
410T | 0.03 | 0.576 | 0.672 | 10.99 | 0.398 | 0.092 | 0.010 | 0.073 | bal. |
Alloy | Creq (%) | Nieq (%) | Ms (°C) | Md30 (°C) |
---|---|---|---|---|
410F | 11.9905 | 0.6345 | 372.04 | 235.36 |
410T | 11.9980 | 0.686 | --- | --- |
Alloy | Mean | Standard Deviation |
---|---|---|
410F | 174.00 | 3.87 |
410T | 314.00 | 11.82 |
Alloy | pH 5.8 | pH 4.0 | pH 2.0 |
---|---|---|---|
410F | −0.126 ± 0.001 | −0.179 ± 0.017 | −0.465 ± 0.071 |
410T | −0.137 ± 0.002 | −0.176 ± 0.010 | −0.462 ± 0.047 |
pH | Corrosion Current Density (A/cm2) | Corrosion Rate (mm/yr) | ||
---|---|---|---|---|
410F | 410T | 410F | 410T | |
5.8 | (6.28 ± 1.79) × 10−8 | (3.21 ± 0.45) × 10−8 | (5.46 ± 2.65) × 10−4 | (3.75 ± 0.49) × 10−4 |
4.0 | (3.65 ± 2.84) × 10−7 | (3.84 ± 1.27) × 10−7 | (4.24 ± 3.89) × 10−3 | (3.81 ± 1.47) × 10−3 |
2.0 | (2.02 ± 0.48) × 10−4 | (1.56 ± 0.37) × 10−4 | 2.35 ± 0.55 | 2.08 ± 0.53 |
pH | Ea–c (V) | Eprot (V) | ||
---|---|---|---|---|
410F | 410T | 410F | 410T | |
5.8 | −0.315 ± 0.006 | −0.283 ± 0.02 | _ | _ |
4.0 | −0.323 ± 0.02 | −0.296 ± 0.01 | _ | _ |
2.0 | −0.391 ± 0.01 | −0.405 ± 0.003 | −0.198 ± 0.019 | −0.218 ± 0.002 |
pH | Rp (Ω.cm2) | |
---|---|---|
410F | 410T | |
5.8 | (1.2 ± 0.3) × 105 | (1.1 ± 0.3) × 105 |
4.0 | (5.9 ± 1.2) × 104 | (8.1 ± 0.7) × 104 |
2.0 | (9.8 ± 1.3) × 102 | (6.7 ± 2.1) × 102 |
pH | RS Ω.cm2 | R1 Ω.cm2 | C1 µF.cm−2 | n1 × 102 | Rct Ω.cm2 | Cdl F.cm−2 | ndl × 102 | χ2 |
---|---|---|---|---|---|---|---|---|
5.8 | 236 ± 7 | 128 ± 22 | 31 ± 5 | 89 ± 1 | (1.2 ± 0.3) × 105 | (9.5 ± 3.9) × 10−6 | 94 ± 2 | 2.5 × 10−3 |
4.0 | 177 ± 48 | 124 ± 57 | 116 ± 45 | 87 ± 5 | (5.9 ± 1.2) × 104 | (6.5 ± 0.8) × 10−5 | 89 ± 9 | 6.4 × 10−3 |
2.0 | 45 ± 13 | 345 ± 50 | 238 ± 54 | 77 ± 1 | (6.8 ± 0.9) × 102 | (9.8 ± 0.7) × 10−2 | 85 ± 5 | 2.3 × 10−3 |
pH | RS Ω.cm2 | R1 Ω.cm2 | C1 µF.cm−2 | n1 × 102 | Rct Ω.cm2 | Cdl F.cm−2 | ndl × 102 | χ2 |
---|---|---|---|---|---|---|---|---|
5.8 | 264 ± 28 | 123 ± 6 | 41 ± 12 | 87 ± 1 | (1.1 ± 0.3) × 105 | (7.9 ± 1.9) × 10−6 | 94 ± 1 | 4.5 × 10−3 |
4.0 | 224 ± 30 | 100 ± 13 | 89 ± 4 | 89 ± 5 | (8.1 ± 0.7) × 104 | (9.6 ± 6.7) × 10−5 | 90 ± 5 | 7.7 × 10−3 |
2.0 | 45 ± 4 | 218 ± 53 | 281 ± 40 | 77 ± 1 | (5.0 ± 1.6) × 102 | (6.7 ± 0.9) × 10−2 | 92 ± 2 | 3.8 × 10−3 |
Alloy | pH 5.8 | pH 4.0 | pH 2.0 |
---|---|---|---|
410F | 0.323 ± 0.032 | 9.080 ± 4.821 | 71.922 ± 3.945 |
410T | 0.121 ± 0.032 | 22.911 ± 8.262 | 68.302 ± 6.783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queiroz, C.H.B.; Marques, D.A.; Diógenes, O.B.F.; Girão, D.d.C.; Vasques, R.B.; Viana, A.K.d.N.; Fargas, G.; Florez, M.A.C.; Araújo, W.S. Electrochemical Behavior of Thermomechanically Processed UNS S41003 Steel in Acidic Chloride Media: Assessing Martensitic Transformation Effects. Metals 2025, 15, 880. https://doi.org/10.3390/met15080880
Queiroz CHB, Marques DA, Diógenes OBF, Girão DdC, Vasques RB, Viana AKdN, Fargas G, Florez MAC, Araújo WS. Electrochemical Behavior of Thermomechanically Processed UNS S41003 Steel in Acidic Chloride Media: Assessing Martensitic Transformation Effects. Metals. 2025; 15(8):880. https://doi.org/10.3390/met15080880
Chicago/Turabian StyleQueiroz, Carlos H. B., Davi A. Marques, Otílio B. F. Diógenes, Daniel de C. Girão, Roberta B. Vasques, Adolfo K. do N. Viana, Gemma Fargas, Mauro A. C. Florez, and Walney S. Araújo. 2025. "Electrochemical Behavior of Thermomechanically Processed UNS S41003 Steel in Acidic Chloride Media: Assessing Martensitic Transformation Effects" Metals 15, no. 8: 880. https://doi.org/10.3390/met15080880
APA StyleQueiroz, C. H. B., Marques, D. A., Diógenes, O. B. F., Girão, D. d. C., Vasques, R. B., Viana, A. K. d. N., Fargas, G., Florez, M. A. C., & Araújo, W. S. (2025). Electrochemical Behavior of Thermomechanically Processed UNS S41003 Steel in Acidic Chloride Media: Assessing Martensitic Transformation Effects. Metals, 15(8), 880. https://doi.org/10.3390/met15080880