Dominant Role of Temperature in Drying Kinetics of Magnetite Pellet: Experimental and Modeling Study
Abstract
1. Introduction
2. Experimental
2.1. Raw Materials Characterization
2.2. Experimental Methods
3. Results
3.1. Drying Experiments
3.2. Drying Kinetics of Pellets
3.2.1. Drying Kinetic Models
3.2.2. Drying Kinetics Analysis
0.43966V3 + 3.9451 × 10−5V9 − 6.20379 × 10−6L3 + 4.02891 × 10−13L9 R2 = 0.999
0.016822V3 + 8.7612 × 10−5V9 + 4.3775 × 10−6L3 + 1.0491 × 10−13L9 R2 = 0.987
3.2.3. Validation of Drying Kinetics
4. Conclusions
- Drying tests of the natural magnetite oxidized pellets revealed that the drying medium temperature significantly influenced the drying rate, while the interaction between the pellet diameter and temperature exhibited minimal effects. The drying process was best described by the modified Page model (III).
- The modified Page model (III) achieved excellent fitting performance, and the polynomial regression analysis of the model coefficients (‘a’, ‘k’ and ‘n’) using the dataset showed R2 values always exceeding 0.99. The high fitting R2 values confirmed the robust performance of the drying kinetics model MR = aexp(−ktn) in describing the experimental data.
- Validation of the pellet drying kinetic model demonstrated close agreement between the experimental measurements and theoretical predictions, with Pearson correlation coefficients approaching 1. The modified Page model (III) accurately predicted the effects of the drying temperature and medium velocity on the moisture content evolution, while exhibiting enhanced predictive precision at elevated temperatures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Li, X.; Liu, X.; Li, H.; Bu, X.; Chen, S.; Lyu, Q. Evaluation and Prediction Models for Blast Furnace Operating Status Based on Big Data Mining. Metals 2023, 13, 1250. [Google Scholar] [CrossRef]
- Liang, X.; Lin, Q.; Muslemani, H.; Lei, M.; Liu, Q.; Li, J.; Wu, A.; Liu, M.; Ascui, F. Assessing the economics of CO2 capture in China′s iron/steel sector: A case study. Energy Procedia 2019, 158, 3715–3722. [Google Scholar]
- Li, F.; Chu, M.; Tang, J.; Liu, Z.; Wang, J.; Li, S. Life-cycle assessment of the coal gasification-shaft furnace-electric furnace steel production process. J. Clean. Prod. 2021, 287, 125075. [Google Scholar] [CrossRef]
- Liu, Y.R.; Shen, Y.S. Modelling and optimisation of biomass injection in ironmaking blast furnaces. Prog. Energy Combust. Sci. 2021, 87, 100952. [Google Scholar] [CrossRef]
- Clare Broadbent. Co-Product Methodology for the Steel Industry. Available online: https://worldsteel.org/zh-hans/steel-topics/life-cycle-thinking/methodology-for-slag-lci-calculation/ (accessed on 14 February 2014).
- Nishioka, K.; Ujisawa, Y.; Tonomura, S. Sustainable aspects of CO2 ultimate reduction in the steelmaking process(COURSE50 Project), Part 1: Hydrogen reduction in the blast furnace. J. Sustain. Metall. 2016, 2, 200. [Google Scholar] [CrossRef]
- Umadevi, T.; Sangamesh, D.; Naveen, F.L. Influence of plant operating parameters on quality of iron ore pellet. World Iron Steel 2013, 3, 36–43. [Google Scholar]
- Thornton, C.; Ciomocos, M.T.; Adams, M.J. Numerical simulations of agglomerate impact breakage. Powder Technol. 1999, 105, 74–82. [Google Scholar] [CrossRef]
- de Moraes, S.L.; Lima, J.R.; Neto, J.B. Effect of colloidal agents in iron ore pelletizing. Miner. Process. Extr. Metall. Rev. 2018, 39, 414–419. [Google Scholar] [CrossRef]
- Van Dyk, J.C.; Benson, S.A.; Laumb, M.L.; Waanders, B. Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel 2019, 88, 1057–1063. [Google Scholar] [CrossRef]
- Wang, W.; Si, X.; Yang, H.; Zhang, H.; Lu, J. Heat-transfer model of the rotary ash cooler used in circulating fluidized-bed boilers. Energy Fuels 2010, 24, 2570–2575. [Google Scholar] [CrossRef]
- Barrios, G.K.; de Carvalho, R.M.; Kwade, A.; Tavares, L.M. Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol. 2013, 248, 84–93. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Li, P. Research on the hot air drying characteristics and drying model of ultrafine silicon carbide powder pellets. Dry. Technol. Equip. 2014, 12, 17–24. [Google Scholar]
- Guo, J.; Li, B.; Xie, O. Simulation Analysis of Pellet Drying Process Based on Fluent. Inf. Technol. 2015, 2, 22–25+30. [Google Scholar]
- Ljung, A.L.; Staffan Lundström, T.; Tano, K. Simulation of convective drying of a cylindrical iron ore pellet. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 703–716. [Google Scholar] [CrossRef]
- Li, Q.; She, X.; Wang, J.; Xue, Q.; Li, W.; Lin, P. Kinetic Model Research on Drying Characteristics of Composite Green Pellet in Rotary Hearth Furnace. ISIJ Int. 2023, 63, 1308–1315. [Google Scholar] [CrossRef]
- Chen, S.; Chen, D.; Lyu, Y.N.; Wu, F.B.; Yin, W.A. Reduction and subsequent carburization of pre-oxidation magnetite pellets. J. Cent. South Univ. 2022, 29, 1856–1868. [Google Scholar] [CrossRef]
- Sandeep, K.T.K.; Viswanathan, N.N.; Ahmed, H.; Dahlin, A.; Andersson, C.; Bjorkman, B. Developing the Oxidation Kinetic Model for Magnetite Pellet. Metall. Mater. Trans. 2019, 50, 162–172. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.F.; Chen, F.; He, Y.; Jiang, T.; Zheng, F.Q. Combustion reaction of pulverized coal on the deposit formation in the kiln for Iron ore pellet production. Energy Fuel 2016, 30, 6123. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Gupta, S.; Lindblom, B.; Jonsson, S.; French, D.; Sahajwalla, V. Assessment of ash deposition tendency in a rotary kiln using thermo-mechanical analysis and experimental combustion furnace. Fuel 2014, 135, 301. [Google Scholar] [CrossRef]
- Ling, Y.; Li, Q.; Zheng, H.; Omran, M.; Gao, L.; Li, K.; Chen, G. Drying kinetics and microstructure evolution of nano-zirconia under microwave pretreatment. Ceram. Int. 2021, 47, 22530–22539. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Q.; Ling, Y.; Omran, M.; Gao, L.; Chen, G. Optimisation on the microwave drying of ammonium polyvanadate(APV)-based on a kinetic study. J. Mater. Res. Technol. 2021, 13, 1056–1067. [Google Scholar] [CrossRef]
- Bunushree, B.; Paramasivan, B. Experimental and modelling studies of convective and microwave drying kinetics for microalgae. Bioresour. Technol. 2021, 340, 125721. [Google Scholar]
- Souza, A.S.; de Souza Pinto, T.C.; Sarkis, A.M.; De Pádua, T.F.; Béttega, R. Energy analysis of the convective drying of iron ore fines: Original scientific paper. Chem. Ind. Chem. Eng. Q. 2023, 29, 189–200. [Google Scholar]
- Ammasi, A. Effect of heating rate on decomposition temperature of goethite ore. Trans. Indian Inst. Met. 2020, 73, 93–98. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, B.; Zhou, F. Effect of alkalinity on the properties and drying characteristics of green pellets under different ore blending structures. Sintered Pellets 2024, 49, 63–69+76. [Google Scholar]
- Wang, Q.; Yang, H.; Wang, P.; Lu, J.; Liu, Q.; Zhang, H.; Wei, L.; Zhang, M. Application of CPFD method in the simulation of circulating fluidized bed with a loop seal, Part I-Determination of modeling parameters. Powder Technol. 2014, 253, 814–821. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, X. A Study on the Influence of Drying and Preheating Parameters on the Roasting Properties of Limonite Pellets. Minerals 2024, 14, 166. [Google Scholar] [CrossRef]
- Qi, X. Definition and calculation of degrees of freedom in mathematical statistics. Sci. Consult. (Sci. Technol.-Manag.) 2018, 6, 112. [Google Scholar]
- Omid, M.; Baharlooei, A.; Ahmadi, H. Modeling drying kineties of pistaehio nuts with multilayer feed-forward neural network. Dry. Technol. 2009, 27, 1069–1077. [Google Scholar] [CrossRef]
- Navneet, K.; Sarker, B.C.; Sharma, H.K. Mathematical modelling of thin layer hot air drying of carrot pomace. J. Food Sci. Technol. 2012, 49, 33–41. [Google Scholar]
- Saeed, F.; Teymor, T.; Barat, G. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer. J. Food Sci. Technol. 2015, 52, 2950–2957. [Google Scholar]
- Vega, A.; Fito, P.; Andres, A.; Lemus, M. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J. Food Eng. 2007, 79, 1460–1466. [Google Scholar] [CrossRef]
- Meisami-Asl, E.; Rafiee, S.; Keyhani, A.; Tabatabaeefar, A. Determination of suitable thin-layer drying curve model for apple slices (variety-Golab). Plant Omics 2010, 3, 103–111. [Google Scholar]
- Song, Z.; Yao, L.; Jing, C.; Zhao, X.; Wang, W.; Ma, C. Drying behavior of lignite under microwave heating. Dry. Technol. 2017, 35, 433–443. [Google Scholar] [CrossRef]
- Clixby, G. Influence of softening and melting properties of burden properties of burden materials on blast furnace operation. Ironmak. Steelmak. 1986, 13, 169–171. [Google Scholar]
- Pal, J.; Ghorai, S.; Agarwal, S.; Nandi, B.; Chakraborty, T.; Das, G.; Prakash, S. Effect of blaine fineness on the quality of hematite iron ore pellets for blast furnace. Miner. Process. Extr. Metall. Rev. 2015, 36, 83–85. [Google Scholar] [CrossRef]
Major Chemical Composition | TFe | FeO | Al2O3 | SiO2 | CaO | MgO | S | p | n | LOI (Loss on Ignition) |
---|---|---|---|---|---|---|---|---|---|---|
Content (wt.%) | 65.52 | 25.39 | 1.37 | 3.69 | 1.85 | 1.93 | 0.25 | 0.00 | 0.00 | — |
Std. Dev. (%) | 0.21 | 0.18 | 0.03 | 0.05 | 0.04 | 0.06 | 0.01 | — | — | — |
Parameter | +0.15 mm/% | −0.075 mm/% | −0.045 mm/% | Bulk Density (g/cm3) | True Density (g/cm3) | Pelletization Index (K) |
---|---|---|---|---|---|---|
Specification | 1.96 | 82.97 | 63.93 | 2.17 | 4.82 | 0.41 |
Std. Dev. (%) | 0.07 | 0.50 | 0.48 | 0.03 | 0.06 | 0.08 |
Component | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | SO3 | P2O5 |
Content (wt.%) | 57.32 | 15.10 | 7.29 | 3.41 | 2.72 | 1.23 | 1.21 | 1.39 | 0.020 | 0.38 |
Std. Dev. (%) | 0.11 | 0.08 | 0.15 | 0.07 | 0.06 | 0.03 | 0.04 | 0.02 | 0.003 | 0.01 |
Component | MnO | ZnO | SrO | ZrO2 | BaO | Cl | LOI (Loss on Ignition) | |||
Content (wt.%) | 0.10 | 0.011 | 0.033 | 0.027 | 0.053 | 0.022 | 9.51 | |||
Std. Dev. (%) | 0.001 | 0.001 | 0.002 | 0.001 | 0.003 | 0.002 | 0.10 |
Parameter | Methylene Blue Absorption | 2 h Water Absorption | Swelling Volume | Swelling Index |
---|---|---|---|---|
Value | 27.59 | 145 | 19.1 | 5.5 |
Std. Dev. (%) | 0.45 | 3.6 | 0.4 | 0.15 |
Unit | g/100 g | % | mL/3 g | mL/2 g |
Test Group | Factor | |||||
---|---|---|---|---|---|---|
Drying Medium Temperature, T (°C) | Medium Velocity, V (m/s) | T × V | Pellet Diameter, L (mm) | T × L | Blank | |
1 | 350 (1) | 0.7356 (1) | 1 | 9.5 (1) | 1 | 1 |
2 | 350 (1) | 1.1884 (2) | 2 | 12.5 (2) | 2 | 2 |
3 | 350 (1) | 1.6411 (3) | 3 | 15.5 (3) | 3 | 3 |
4 | 400 (2) | 0.7356 (1) | 1 | 12.5 (2) | 2 | 3 |
5 | 400 (2) | 1.1884 (2) | 2 | 15.5 (3) | 3 | 1 |
6 | 400 (2) | 1.6411 (3) | 3 | 9.5 (1) | 1 | 2 |
7 | 450 (3) | 0.7356 (1) | 2 | 9.5 (1) | 3 | 3 |
8 | 450 (3) | 1.1884 (2) | 3 | 12.5 (2) | 1 | 1 |
9 | 450 (3) | 1.6411 (3) | 1 | 15.5 (3) | 2 | 2 |
10 | 350 (1) | 0.7356 (1) | 3 | 15.5 (3) | 2 | 1 |
11 | 350 (1) | 1.1884 (2) | 1 | 9.5 (1) | 3 | 2 |
12 | 350 (1) | 1.6411 (3) | 2 | 12.5 (2) | 1 | 3 |
13 | 400 (2) | 0.7356 (1) | 2 | 15.5 (3) | 1 | 2 |
14 | 400 (2) | 1.1884 (2) | 3 | 9.5 (1) | 2 | 3 |
15 | 400 (2) | 1.6411 (3) | 1 | 12.5 (2) | 3 | 1 |
16 | 450 (3) | 0.7356 (1) | 3 | 12.5 (2) | 3 | 2 |
17 | 450 (3) | 1.1884 (2) | 1 | 15.5 (3) | 1 | 3 |
18 | 450 (3) | 1.6411 (3) | 2 | 9.5 (1) | 2 | 1 |
Time, t (min) | Moisture Ratio, MR (Dimensionless) | |||||
---|---|---|---|---|---|---|
0.7356 m/s | 1.1884 m/s | 1.6411 m/s | ||||
9.5 | 15.5 | 9.5 | 12.5 | 12.5 | 15.5 | |
0 | 1 | 1 | 1 | 1 | 1 | 1 |
0.25 | 0.94 | 0.94 | 0.93 | 0.93 | 0.91 | 0.91 |
0.5 | 0.84 | 0.85 | 0.81 | 0.81 | 0.78 | 0.78 |
0.75 | 0.74 | 0.74 | 0.69 | 0.69 | 0.64 | 0.64 |
1 | 0.63 | 0.63 | 0.57 | 0.57 | 0.51 | 0.51 |
1.25 | 0.53 | 0.53 | 0.46 | 0.46 | 0.39 | 0.39 |
1.5 | 0.43 | 0.43 | 0.37 | 0.37 | 0.3 | 0.3 |
1.75 | 0.35 | 0.35 | 0.29 | 0.29 | 0.22 | 0.22 |
2 | 0.28 | 0.28 | 0.22 | 0.22 | 0.16 | 0.16 |
2.5 | 0.17 | 0.17 | 0.12 | 0.12 | 0.08 | 0.08 |
3 | 0.1 | 0.1 | 0.06 | 0.07 | 0.04 | 0.04 |
3.5 | 0.06 | 0.06 | 0.03 | 0.03 | 0.02 | 0.02 |
4 | 0.03 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 |
4.5 | 0.02 | 0.02 | 0.01 | 0.01 | 0 | 0 |
5 | 0.01 | 0.01 | 0 | 0 | ||
5.5 | 0 | 0 |
Time, t (min) | Moisture Ratio, MR (Dimensionless) | |||||
---|---|---|---|---|---|---|
0.7356 m/s | 1.1884 m/s | 1.6411 m/s | ||||
12.5 | 15.5 | 9.5 | 15.5 | 9.5 | 12.5 | |
0 | 1 | 1 | 1 | 1 | 1 | 1 |
0.25 | 0.91 | 0.91 | 0.89 | 0.89 | 0.87 | 0.87 |
0.5 | 0.78 | 0.78 | 0.74 | 0.74 | 0.7 | 0.7 |
0.75 | 0.64 | 0.64 | 0.59 | 0.6 | 0.53 | 0.53 |
1 | 0.52 | 0.52 | 0.46 | 0.46 | 0.39 | 0.39 |
1.25 | 0.41 | 0.41 | 0.35 | 0.35 | 0.28 | 0.28 |
1.5 | 0.31 | 0.31 | 0.26 | 0.26 | 0.19 | 0.19 |
1.75 | 0.24 | 0.23 | 0.19 | 0.18 | 0.13 | 0.13 |
2 | 0.18 | 0.17 | 0.13 | 0.13 | 0.09 | 0.09 |
2.5 | 0.09 | 0.09 | 0.06 | 0.06 | 0.04 | 0.04 |
3 | 0.05 | 0.05 | 0.03 | 0.03 | 0.01 | 0.01 |
3.5 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
4 | 0.01 | 0.01 | 0.01 | 0 | 0 | 0 |
4.5 | 0 | 0 | 0 |
Time, t (min) | Moisture Ratio, MR (Dimensionless) | |||||
---|---|---|---|---|---|---|
0.7356 m/s | 1.1884 m/s | 1.6411 m/s | ||||
9.5 | 12.5 | 12.5 | 15.5 | 9.5 | 15.5 | |
0 | 1 | 1 | 1 | 1 | 1 | 1 |
0.25 | 0.85 | 0.85 | 0.83 | 0.83 | 0.79 | 0.79 |
0.5 | 0.67 | 0.67 | 0.64 | 0.64 | 0.57 | 0.57 |
0.75 | 0.51 | 0.52 | 0.47 | 0.47 | 0.39 | 0.39 |
1 | 0.38 | 0.38 | 0.34 | 0.33 | 0.26 | 0.26 |
1.25 | 0.28 | 0.28 | 0.23 | 0.23 | 0.17 | 0.17 |
1.5 | 0.2 | 0.2 | 0.16 | 0.16 | 0.1 | 0.1 |
1.75 | 0.14 | 0.14 | 0.11 | 0.11 | 0.06 | 0.06 |
2 | 0.1 | 0.1 | 0.07 | 0.07 | 0.04 | 0.04 |
2.5 | 0.04 | 0.04 | 0.03 | 0.03 | 0.01 | 0.01 |
3 | 0.02 | 0.02 | 0.01 | 0.01 | 0 | 0 |
3.5 | 0.01 | 0.01 | 0 | 0 | ||
4 | 0 | 0 |
Test Group | Factor | Experimental Results | |||||||
---|---|---|---|---|---|---|---|---|---|
Drying Medium Temperature, T (°C) | Gas Velocity, V (m/s) | T × V | Pellet Diameter, L (mm) | T × L | Blank | Complete Drying Time, Ft (min) | Average Drying Rate (g·g−1·min−1) | ||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 5.5 | 0.2231 | |
2 | 1 | 2 | 2 | 2 | 2 | 2 | 5 | 0.2473 | |
3 | 1 | 3 | 3 | 3 | 3 | 3 | 4.5 | 0.2764 | |
4 | 2 | 1 | 1 | 2 | 2 | 3 | 4.5 | 0.2736 | |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 4 | 0.3054 | |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 4 | 0.3146 | |
7 | 3 | 1 | 2 | 1 | 3 | 3 | 4 | 0.3161 | |
8 | 3 | 2 | 3 | 2 | 1 | 1 | 3.5 | 0.3508 | |
9 | 3 | 3 | 1 | 3 | 2 | 2 | 3 | 0.3955 | |
10 | 1 | 1 | 3 | 3 | 2 | 1 | 5.5 | 0.2231 | |
11 | 1 | 2 | 1 | 1 | 3 | 2 | 5 | 0.2473 | |
12 | 1 | 3 | 2 | 2 | 1 | 3 | 4.5 | 0.2764 | |
13 | 2 | 1 | 2 | 3 | 1 | 2 | 4.5 | 0.275 | |
14 | 2 | 2 | 3 | 1 | 2 | 3 | 4.5 | 0.2836 | |
15 | 2 | 3 | 1 | 2 | 3 | 1 | 4 | 0.3146 | |
16 | 3 | 1 | 3 | 2 | 3 | 2 | 4 | 0.3162 | |
17 | 3 | 2 | 1 | 3 | 1 | 3 | 3.5 | 0.3508 | |
18 | 3 | 3 | 2 | 1 | 2 | 1 | 3 | 0.3955 | |
Complete Drying Time, Ft | EI | 30 | 28 | 25.5 | 26 | 25.5 | 25.5 | ET = 76.5 | |
EII | 25.5 | 25.5 | 25 | 25.5 | 25.5 | 26 | |||
EIII | 21 | 23 | 26 | 25 | 25.5 | 25 | |||
5 | 4.6667 | 4.25 | 4.3333 | 4.25 | 4.25 | = 4.25 | |||
4.25 | 4.25 | 4.1667 | 4.25 | 4.25 | 4.3333 | ||||
3.5 | 3.8333 | 4.3333 | 4.1667 | 4.25 | 4.1667 | ||||
r | 1.5 | 0.8333 | 0.1667 | 0.1667 | 0 | 0.1667 | |||
Average Drying Rate | EI | 1.4938 | 1.6271 | 1.8049 | 1.7803 | 1.7908 | 1.8001 | ET = 5.3854 | |
EII | 1.7666 | 1.7853 | 1.8158 | 1.7789 | 1.8185 | 1.7667 | |||
EIII | 2.1249 | 1.9730 | 1.7647 | 1.8262 | 1.7761 | 1.8186 | |||
0.2490 | 0.2712 | 0.3008 | 0.2967 | 0.2985 | 0.3000 | = 0.2992 | |||
0.2945 | 0.2975 | 0.3026 | 0.2965 | 0.3031 | 0.2944 | ||||
0.3541 | 0.3288 | 0.2941 | 0.3044 | 0.2960 | 0.3031 | ||||
r | 0.1052 | 0.0576 | 0.0085 | 0.0079 | 0.0071 | 0.0087 |
Item | Source of Variation | Sum of Squares (SS) | Degrees of Freedom (df) | Mean Square (MS) | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|---|
Complete Drying Time, Ft | T | 3.375 | 2 | 1.6875 | 152.2121 | 0.0065 | Significant |
V | 1.0417 | 2 | 0.5208 | 46.9760 | 0.0211 | Significant | |
TV | 0.0417 | 2 | 0.0208 | 1.8761 | 0.3039 | Insignificant | |
L | 0.0417 | 2 | 0.0208 | 1.8761 | 0.3039 | Insignificant | |
TL | 0 | 2 | 0 | / | 1.0000 | Insignificant | |
Error | 0 | 2 | 0 | / | / | / | |
Total | 4.5 | 12 | / | / | / | / | |
Average Drying Rate | T | 0.0167 | 2 | 0.008348 | 316.63 | 0.0031 | Significant |
V | 0.0050 | 2 | 0.002498 | 94.75 | 0.0105 | Significant | |
TV | 1.20 × 10−4 | 2 | 6.02 × 10−5 | 2.2848 | 0.304 | Insignificant | |
L | 1.21 × 10−4 | 2 | 6.04 × 10−5 | 2.2923 | 0.303 | Insignificant | |
TL | 7.74 × 10−5 | 2 | 3.87 × 10−5 | 1.4672 | 0.404 | Insignificant | |
Error | 5.27 × 10−5 | 2 | 2.64 × 10−5 | / | / | / | |
Total | 0.02206 | 12 | / | / | / | / |
Model | Drying Medium Temperature, T (°C) | Medium Velocity, V (m/s) | Pellet Diameter, L (mm) | R2 | F-Value | Prob > F |
---|---|---|---|---|---|---|
Lewis model | 350 | 1.1884 | 15.5 | 0.9691 | 1070 | 1 |
400 | 1.6411 | 12.5 | 0.9793 | 1126 | 1 | |
450 | 0.7356 | 9.5 | 0.9876 | 1911 | 1 | |
Page model | 350 | 1.1884 | 15.5 | 0.9952 | 5357 | 3.54 × 10−11 |
400 | 1.6411 | 12.5 | 0.9943 | 1612 | 0 | |
450 | 0.7356 | 9.5 | 0.9971 | 29,680 | 0 | |
Modified Page model (II) | 350 | 1.1884 | 15.5 | 0.9945 | 1352 | 0 |
400 | 1.6411 | 12.5 | 0.9982 | 32,221 | 0 | |
450 | 0.7356 | 9.5 | 0.9895 | 752 | 1.43 × 10−12 | |
Modified Page model (III) | 350 | 1.1884 | 15.5 | 0.9976 | 13,245 | 0 |
400 | 1.6411 | 12.5 | 0.9993 | 43,222 | 0 | |
450 | 0.7356 | 9.5 | 0.9986 | 1234 | 0 |
Test Group | Drying Medium Temperature, T (°C) | Medium Velocity, V (m/s) | Pellet Diameter, L (mm) | R2 | a | k | n |
---|---|---|---|---|---|---|---|
1 | 350 | 0.7356 | 9.5 | 0.9976 | 0.99944 | 0.46321 | 1.45651 |
2 | 350 | 0.7356 | 15.5 | 0.9984 | 1.00093 | 0.46207 | 1.46248 |
3 | 350 | 1.1884 | 9.5 | 0.9971 | 1.00004 | 0.56 | 1.44077 |
4 | 350 | 1.1884 | 12.5 | 0.9992 | 1.00104 | 0.56168 | 1.43049 |
5 | 350 | 1.6411 | 12.5 | 0.9986 | 0.99988 | 0.67628 | 1.43463 |
6 | 350 | 1.6411 | 15.5 | 0.9986 | 0.99988 | 0.67628 | 1.43463 |
7 | 400 | 0.7356 | 12.5 | 0.9972 | 0.99992 | 0.65731 | 1.39734 |
8 | 400 | 0.7356 | 15.5 | 0.9981 | 0.99933 | 0.65936 | 1.41191 |
9 | 400 | 1.1884 | 9.5 | 0.9983 | 0.99912 | 0.77629 | 1.3752 |
10 | 400 | 1.1884 | 15.5 | 0.9989 | 0.99748 | 0.77146 | 1.39752 |
11 | 400 | 1.6411 | 9.5 | 0.9982 | 1.00044 | 0.93989 | 1.37834 |
12 | 400 | 1.6411 | 12.5 | 0.9982 | 1.00044 | 0.93989 | 1.37834 |
13 | 450 | 0.7356 | 9.5 | 0.9964 | 1.00063 | 0.96538 | 1.27144 |
14 | 450 | 0.7356 | 12.5 | 0.9971 | 0.99957 | 0.95884 | 1.28082 |
15 | 450 | 1.1884 | 12.5 | 0.9953 | 0.99939 | 1.08877 | 1.28318 |
16 | 450 | 1.1884 | 15.5 | 0.9983 | 1.00016 | 1.0957 | 1.28166 |
17 | 450 | 1.6411 | 9.5 | 0.9991 | 0.99909 | 1.35378 | 1.27041 |
18 | 450 | 1.6411 | 15.5 | 0.9991 | 0.99909 | 1.35378 | 1.27041 |
Item | Parameter | Theoretical Value | Fitted Value |
---|---|---|---|
Theoretical Calculation | Pearson Correlation | 1 | 0.999 ** |
Sig. (2-tailed) | / | 0.000 | |
Sum of Squares and CP | 2.132 | 2.075 | |
Covariance | 0.133 | 0.130 | |
N | 17 | 17 | |
Experimental Measurement | Pearson Correlation | 0.999 ** | 1 |
Sig. (2-tailed) | 0.000 | / | |
Sum of Squares and CP | 2.075 | 2.022 | |
Covariance | 0.130 | 0.126 | |
N | 17 | 17 |
Item | Parameter | Theoretical Value | Fitted Value |
---|---|---|---|
Theoretical Calculation | Pearson Correlation | 1 | 1.000 ** |
Sig. (2-tailed) | / | 0.000 | |
Sum of Squares and CP | 1.471 | 1.463 | |
Covariance | 0.123 | 0.122 | |
N | 13 | 13 | |
Experimental Measurement | Pearson Correlation | 1.000 ** | 1 |
Sig. (2-tailed) | 0.000 | / | |
Sum of Squares and CP | 1.463 | 1.456 | |
Covariance | 0.122 | 0.121 | |
N | 13 | 13 |
Item | Parameter | Theoretical Value | Fitted Value |
---|---|---|---|
Theoretical Calculation | Pearson Correlation | 1 | 1.000 ** |
Sig. (2-tailed) | / | 0.000 | |
Sum of Squares and CP | 1.264 | 1.265 | |
Covariance | 0.115 | 0.115 | |
N | 12 | 12 | |
Experimental Measurement | Pearson Correlation | 1.000 ** | 1 |
Sig. (2-tailed) | 0.000 | / | |
Sum of Squares and CP | 1.265 | 1.267 | |
Covariance | 0.115 | 0.115 | |
N | 12 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Lu, M.; Zhang, H. Dominant Role of Temperature in Drying Kinetics of Magnetite Pellet: Experimental and Modeling Study. Metals 2025, 15, 782. https://doi.org/10.3390/met15070782
Liu X, Lu M, Zhang H. Dominant Role of Temperature in Drying Kinetics of Magnetite Pellet: Experimental and Modeling Study. Metals. 2025; 15(7):782. https://doi.org/10.3390/met15070782
Chicago/Turabian StyleLiu, Xunrui, Manman Lu, and Hanquan Zhang. 2025. "Dominant Role of Temperature in Drying Kinetics of Magnetite Pellet: Experimental and Modeling Study" Metals 15, no. 7: 782. https://doi.org/10.3390/met15070782
APA StyleLiu, X., Lu, M., & Zhang, H. (2025). Dominant Role of Temperature in Drying Kinetics of Magnetite Pellet: Experimental and Modeling Study. Metals, 15(7), 782. https://doi.org/10.3390/met15070782