A Characterization of the Powder Yield Behaviors During a Hot Isostatic Pressing Process
Abstract
1. Introduction
2. A Solution Approach to Powder Yield Model During HIP Process
2.1. Improved Shima–Oyane Model: Its Solution Approach
2.2. Experiment Procedures for Model Solution and Validation
2.3. FEM-DEM Coupled Procedures for Model Solution and Prediction
3. Solution Process of Improved Powder-Yield Model
3.1. Validation of FEM-DEM Coupled Model
3.2. Compensation of Temperature Influence on Shima–Oyane Model
3.3. Construction of Stress–Strain–Temperature–Density Relationships
4. Predication of Powder Densification Behaviors and Validation Evaluation
4.1. Presentation of Stress–Strain–Temperature–Density Relationships by Solved Model
4.1.1. Macroscopic Analysis of the Experimental Results
4.1.2. Evolution of the Relative Density
4.1.3. Microstructure of HIP Sample
4.2. Validation Evaluation of Improved Powder-Yield Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boris, B.I.; Genrikh, G.S.; Oleg, F.C. Prospect of HIP application in aerospace and power plant industry. In Proceedings of the International Conference on Hot Isostatic Pressing, Andover, MA, USA, 20–22 May 1996. [Google Scholar]
- Atkinson, H.V.; Davies, S. Fundamental aspects of hot isostatic pressing: An overview. Metall. Mater. Trans. A 2000, 31, 2981–3000. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, A.; Wen, Z.; Yue, Z.; Zhang, C. Effects of Hot Isostatic Pressing (HIP) on Microstructure and Mechanical Properties of K403 Nickel-Based Superalloy. High Temp. Mater. Process. 2016, 35, 463–471. [Google Scholar] [CrossRef]
- ElRakayby, H.; Kim, K. Effect of glass container encapsulation on deformation and densification behavior of metal powders during hot isostatic pressing. Int. J. Mater. Form. 2017, 11, 517–525. [Google Scholar] [CrossRef]
- Semiatin, S.L. An Overview of the Thermomechanical Processing of α/β Titanium Alloys: Current Status and Future Research Opportunities. Metall. Mater. Trans. A 2020, 51, 2593–2625. [Google Scholar] [CrossRef]
- Kim, H.S. Densification mechanisms during hot isostatic pressing of stainless steel powder compacts. J. Mater. Process. Technol. 2002, 123, 319–322. [Google Scholar] [CrossRef]
- Xue, Y.; Lang, L.; Bu, G.; Li, L. Densification Modeling of Titanium Alloy Powder during Hot Isostatic Pressing. Sci. Sinter. 2011, 43, 247–260. [Google Scholar] [CrossRef]
- Abdelhafeez, A.; Essa, K. Influences of Powder Compaction Constitutive Models on the Finite Element Simulation of Hot Isostatic Pressing. Procedia CIRP 2016, 55, 188–193. [Google Scholar] [CrossRef]
- Wei, Q.S.; Xue, P.J.; Liu, G.C.; Lu, H.; Huang, J.; Shi, Y.S. Simulation and verification of near-net shaping a complex-shaped turbine disc by hot isostatic pressing process. Int. J. Adv. Manuf. Technol. 2014, 74, 1667–1677. [Google Scholar] [CrossRef]
- Zhou, S.; Song, B.; Xue, P.; Cai, C.; Liu, J.; Shi, Y. Numerical simulation and experimental investigation on densification, shape deformation, and stress distribution of Ti6Al4V compacts during hot isostatic pressing. Int. J. Adv. Manuf. Technol. 2017, 88, 19–31. [Google Scholar] [CrossRef]
- Bu, G.L.; Lang, L.H.; Wang, G.; Song, Y.; Xu, Q.Y. Forming and Simulation of Titanium Alloy Ti-6Al-4V by Hot Isostatic Pressing. Adv. Mater. Res. 2013, 848, 50–54. [Google Scholar] [CrossRef]
- Wang, M.; Yin, Y.J.; Zhou, J.X.; Ji, X.Y.; Nan, H.; Xue, P.J.; Shi, Y.S. A multi-scale study of Inconel 625 powders HIP process and construction of HIP maps. Int. J. Adv. Manuf. Technol. 2017, 90, 3055–3066. [Google Scholar] [CrossRef]
- Liu, G.C.; Shi, Y.S.; Wei, Q.S.; Wang, J.W. Finite Element Analysis of Pressure Influence on Densification of Titanium Alloy Powder under Hot Isostatic Pressing. Key Eng. Mater. 2010, 450, 206–209. [Google Scholar] [CrossRef]
- Geindreau, C.; Bouvard, D.; Doremus, P. Constitutive behaviour of metal powder during hot forming. Part I: Experimental investigation with lead powder as a simulation material. Eur. J. Mech. A Solids 1999, 18, 581–596. [Google Scholar] [CrossRef]
- Van Nguyen, C.; Bezold, A.; Broeckmann, C. Anisotropic shrinkage during hip of encapsulated powder. J. Mater. Process. Technol. 2015, 226, 134–145. [Google Scholar] [CrossRef]
- Han, P.; An, X.Z.; Wang, D.F.; Fu, H.T.; Yang, X.H.; Zhang, H.; Zou, Z.S. MPFEM simulation of compaction densification behavior of Fe-Al composite powders with different size ratios. J. Alloys Compd. 2018, 741, 473–481. [Google Scholar] [CrossRef]
- Wang, B.; Pan, K.J.; Gao, S.; Wu, S.X.; Zhao, C.; Luo, X.; Peng, Q.; Sun, M.H.; Li, D.D.; Li, N.; et al. Synergistic densification mechanism of irregular Ti powder during CIP: 3D MPFEM simulation with real-shape particles. Mater. Des. 2024, 246, 113368. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Li, C.; Ji, G.; Mi, G. MPFEM simulation on hot-pressing densification process of SiC particle/6061Al composite powders. J. Phys. Chem. Solids 2021, 159, 110259. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, C.; Xiao, W.; Gong, X.; Hai, B.; Chen, R.; Zhou, J. MPFEM investigation on densification and mechanical structures during ferrous powder compaction. Adv. Powder Technol. 2024, 35, 104700. [Google Scholar] [CrossRef]
- Zou, Y.; An, X.; Zou, R. Investigation of densification behavior of tungsten powders during hot isostatic pressing with a 3D multi-particle FEM approach. Powder Technol. 2020, 361, 297–305. [Google Scholar] [CrossRef]
- Harthong, B.; Imbault, D.; Dorémus, P. The study of relations between loading history and yield surfaces in powder materials using discrete finite element simulations. J. Mech. Phys. Solids 2012, 60, 784–801. [Google Scholar] [CrossRef]
- Loidolt, P.; Ulz, M.H.; Khinast, J. Modeling yield properties of compacted powder using a multi-particle finite element model with cohesive contacts. Powder Technol. 2018, 336, 426–440. [Google Scholar] [CrossRef]
- Güner, F.; Sofuoglu, H.; Cora, Ö.N. An investigation of contact interactions in powder compaction process through variable friction models. Tribol. Int. 2016, 96, 1–10. [Google Scholar] [CrossRef]
- Xin, X.J.; Jayaraman, P.; Jiang, G.; Wagoner, R.H.; Daehn, G.S. Explicit finite element method simulation of consolidation of monolithic and composite powders. Met. Mater. Trans. A 2002, 33, 2649–2658. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, H.; Zhu, C.; Wang, B.; Liu, K. Comparisons Between 2D and 3D MPFEM Simulations in Modeling Uniaxial High Velocity Compaction Behaviors of Ti-6Al-4V Powder. Arch. Metall. Mater. 2022, 67, 57–65. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, C.; Zhang, W.; Ai, W.; Zhang, X.; Liu, K. Experimental and 3D MPFEM simulation study on the green density of Ti-6Al-4V powder compact during uniaxial high velocity compaction. J. Alloys Compd. 2020, 817, 153226. [Google Scholar] [CrossRef]
- Elguezabal, B.; Martínez-Esnaola, J.; Soler, R.; Paños, E.; Alkorta, J. A multiscale material model for metallic powder compaction during hot isostatic pressing. Powder Technol. 2023, 425, 118599. [Google Scholar] [CrossRef]
- Li, M.; Lim, C.V.S.; Zou, R.; An, X.; Wang, D. Multi-particle FEM modeling on hot isostatic pressing of Ti6Al4V powders. Int. J. Mech. Sci. 2021, 196, 106288. [Google Scholar] [CrossRef]
- Li, M.; Jia, Q.; Li, C.; Guo, Q.; An, X.; Zou, Q.; Zhou, X.; Fu, H.; Zhang, H.; Yang, X.; et al. 3D particulate-scale numerical investigation on hot isostatic pressing of W-Cu composites. Powder Technol. 2023, 415, 118150. [Google Scholar] [CrossRef]
- Oyane, M.; Shima, S.; Kono, Y. Thoery of Plasticity for Porous Metals. Bull. JSME 1973, 16, 1254–1262. [Google Scholar] [CrossRef]
- Shima, S.; Oyane, M. Plasticity theory for porous metals. Int. J. Mech. Sci. 1976, 18, 285–291. [Google Scholar] [CrossRef]
Initial Density | Temperature | Density Increment | Strain | Relative Error (%) | |
---|---|---|---|---|---|
Experimental Results | Simulation Results | ||||
0.980 | 1100 °C | 0.005 | 0.26 | 0.25 | 4.7 |
0.980 | 1100 °C | 0.013 | 0.51 | 0.53 | 3.7 |
0.980 | 800 °C | 0.023 | 0.26 | 0.27 | 4.3 |
Initial Density | Temperature (°C) | Yield Stress | Relative Error (%) | |
---|---|---|---|---|
Experimental Results (MPa) | Simulation Results (MPa) | |||
0.985 | 1100 | 113.6 | 108.8 | 4.2 |
0.990 | 1100 | 139.6 | 132.5 | 5.1 |
0.982 | 800 | 625.9 | 602.0 | 3.8 |
b1 | b2 | b3 | b4 | ||||
---|---|---|---|---|---|---|---|
C1 | 1.25004 | D1 | 10,295.841 | E1 | 164.52288 | G1 | 601,825.6 |
C2 | −9.42466 × 10−7 | D2 | −32.66279 | E2 | −0.00721 | G2 | −1891.7101 |
C3 | 1.09527 × 10−12 | D3 | 0.03449 | E3 | 0.00024 | G3 | 1.97538 |
C4 | −4.37362 × 10−19 | D4 | −1.20587 × 10−5 | E4 | −2.7258 × 10−6 | G4 | −0.00068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, G.; Ran, W.; Dai, W.; Jiang, Q.; Yu, Y.; Zhang, Y. A Characterization of the Powder Yield Behaviors During a Hot Isostatic Pressing Process. Metals 2025, 15, 752. https://doi.org/10.3390/met15070752
Quan G, Ran W, Dai W, Jiang Q, Yu Y, Zhang Y. A Characterization of the Powder Yield Behaviors During a Hot Isostatic Pressing Process. Metals. 2025; 15(7):752. https://doi.org/10.3390/met15070752
Chicago/Turabian StyleQuan, Guozheng, Wenjing Ran, Weiwei Dai, Qian Jiang, Yanze Yu, and Yu Zhang. 2025. "A Characterization of the Powder Yield Behaviors During a Hot Isostatic Pressing Process" Metals 15, no. 7: 752. https://doi.org/10.3390/met15070752
APA StyleQuan, G., Ran, W., Dai, W., Jiang, Q., Yu, Y., & Zhang, Y. (2025). A Characterization of the Powder Yield Behaviors During a Hot Isostatic Pressing Process. Metals, 15(7), 752. https://doi.org/10.3390/met15070752