Effect of Different T6 Heat Treatment Conditions on the Microstructure and Mechanical Properties of Al-7%Si-0.35% Mg (A356) Alloy for Use in Motorcycles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Casting Process
Equipment | Parameters | Specification |
---|---|---|
Melting furnace | Melting chamber temperature | 1200 °C (max.) |
Conservation chamber temperature | 1200 °C (max.) | |
Temperature in the crucible (at the pouring point) | 710–750 °C | |
Nitrogen pressure (N) for degassing | 3–10 bar | |
Nitrogen (N) flow rate for degassing | 5–15 L/min | |
Rotary degasser | 260–320 rpm | |
Metal mold | Mold temperature | 360–420 °C |
Molding time | 30–40 s | |
Solidification time | 130–150 s |
2.3. Heat Treatment Process
2.4. Microstructural Characterization
2.5. Mechanical Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analysis of the A356 Alloy
3.2. Microstructural Characterization
3.2.1. Analysis of the Phases
3.2.2. Effect of T6 Heat Treatment on the Microstructure
3.2.3. Microstructural Analysis Using XRD
3.3. Mechanical Characterization
3.3.1. Hardness Tests
3.3.2. Impact Test
3.3.3. Tensile Test
Analysis of Fracture Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wijethilake, C. Proactive Sustainability Strategy and Corporate Sustainability Performance: The Mediating Effect of Sustainability Control Systems. J. Environ. Manag. 2017, 196, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.C.; Chattopadhyay, K.; Chakrabarty, I. Microstructures and High Temperature Mechanical Properties of A356-Mg2Si Functionally Graded Composites in as-Cast and Artificially Aged (T6) Conditions. J. Alloys Compd. 2019, 805, 454–470. [Google Scholar] [CrossRef]
- Rivera, J.L.V.; Gonçalves, E.; Soares, P.V.; Milito, G.; Perez, J.O.R.; Roque, G.F.P.; Fernández, M.V.; Losada, H.F.; Pereira, F.A.; del Pino, G.G.; et al. The Restored Premolars Biomechanical Behavior: FEM and Experimental Moiré Analyses. Appl. Sci. 2022, 12, 6768. [Google Scholar] [CrossRef]
- Das, S.K.; Green, J.A.S.; Kaufman, J.G. Aluminum recycling: Economic and environmental benefits. Light Metal Age 2010, 68, 22–24. [Google Scholar]
- Dutta, S.; Narala, S.K.R. Experimental Investigation to Study the Effects of Processing Parameters on Developed Novel AM(Al-Mn) Series Alloy. Mater. Manuf. Process. 2020, 35, 1842–1851. [Google Scholar] [CrossRef]
- Gecu, R.; Acar, S.; Kisasoz, A.; Altug GULER, K.; Karaaslan, A. Influence of T6 Heat Treatment on A356 and A380 Aluminium Alloys Manufactured by Thixoforging Combined with Low Superheat Casting. Trans. Nonferrous Met. Soc. China 2018, 28, 385–392. [Google Scholar] [CrossRef]
- De Vasconcelos, J.P.A. Otimização Do Tratamento Térmico T6 Para Ligas de Alumínio A356; University of Porto: Porto, Portugal, 2020. [Google Scholar]
- Rana, R.S.; Purohit, R.; Das, S. Reviews on the Influences of Alloying Elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites. Int. J. Sci. Res. Publ. 2012, 2, 1–7. [Google Scholar]
- Taylor, J.A. Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys. Procedia Mater. Sci. 2012, 1, 19–33. [Google Scholar] [CrossRef]
- Padovano, E.; Badini, C.; Pantarelli, A.; Gili, F.; D’Aiuto, F. A Comparative Study of the Effects of Thermal Treatments on AlSi10Mg Produced by Laser Powder Bed Fusion. J. Alloys Compd. 2020, 831, 154822. [Google Scholar] [CrossRef]
- Shrivastava, V.; Gupta, G.K.; Singh, I.B. Heat Treatment Effect on the Microstructure and Corrosion Behavior of Al-6061 Alloy with Influence of α-Nanoalumina Reinforcement in 3.5% NaCl Solution. J. Alloys Compd. 2019, 775, 628–638. [Google Scholar] [CrossRef]
- Seth, P.P.; Parkash, O.; Kumar, D. Structure and Mechanical Behavior of in Situ Developed Mg 2 Si Phase in Magnesium and Aluminum Alloys—A Review. RSC Adv. 2020, 10, 37327–37345. [Google Scholar] [CrossRef] [PubMed]
- ASTM E1251; Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry. ASTM International: West Conshohocken, PA, USA, 2017.
- Lu, S.; Du, R.; Liu, J.; Chen, L.; Wu, S. A New Fast Heat Treatment Process for Cast A356 Alloy Motorcycle Wheel Hubs. China Foundry 2018, 15, 11–16. [Google Scholar] [CrossRef]
- Jarco, A.; Pezda, J. Effect of Heat Treatment Process and Optimization of Its Parameters on Mechanical Properties and Microstructure of the AlSi11(Fe) Alloy. Materials 2021, 14, 2391. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.A. Efeito de Diferentes Condições do Tratamento Térmico T6 Na Microestrurura e Propriedades Mecânicas Da Liga de Aluminio A356 Visanado a Utilização Em Motocicletas; Universidade Federal do Amazonas—UFAM: Manaus, Brazil, 2022. [Google Scholar]
- ASTM B917/B917M-12(2020); Standard Practice for Heat Treatment of Aluminum-Alloy Castings From All Processes. ASTM: West Conshohocken, PA, USA, 2020.
- Xia, X.; Zhao, Q.; Peng, Y.; Zhang, P.; Liu, L.; Ding, J.; Luo, X.; Wang, L.; Huang, L.; Zhang, H.; et al. Precipitation Behavior and Mechanical Performances of A356.2 Alloy Treated by Al–Sr–La Composite Refinement-Modification Agent. J. Alloys Compd. 2020, 818, 153370. [Google Scholar] [CrossRef]
- ASTM E3-11; Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- ISO 6507-1; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2018.
- IS Z 2241; Metallic Materials—Tensile Testing—Method of Test at Room Temperature. Japanese Industrial Standards Committee: Tokyo, Japan, 2011.
- DIN EN ISO 7500-1; Metallic Materials—Calibration and Verification of Static Uniaxial Testing Machines—Part 1: Tension/Compression Testing Machines—Calibration and Verification of the Force-Measuring System. International Organization for Standardization: Geneva, Switzerland, 2018.
- IS Z 2242; Method for Charpy Pendulum Impact Test of Metallic Materials. Japanese Industrial Standards Committee: Tokyo, Japan, 2018.
- Fávero, L.P.; Belfiore, P. Manual de Análise de Dados: Estatística e Modelagem Multivariada Com Excel®, SPSS® e Stata®; Elsevier: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Smithson, C.; Tang, N.; Sammons, S.; Frace, M.; Batra, D.; Li, Y.; Emerson, G.L.; Carroll, D.S.; Upton, C. The Genomes of Three North American Orthopoxviruses. Virus Genes 2017, 53, 21–34. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.Y.; Huang, H.F.; Zhang, L.; Zhang, B.; Shi, L. High Strength and Ductility of Al–Si–Mg Alloys Fabricated by Deformation and Heat Treatment. Mater. Charact. 2021, 178, 111278. [Google Scholar] [CrossRef]
- Paray, F.; Gruzleski, J.E. Modification—A Parameter to Consider in the Heat Treatment of Al-Si Alloys. Cast Met. 1992, 5, 187–198. [Google Scholar] [CrossRef]
- El-Sabbagh, A.M.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S. Effect of Heat Treatment and Alloying Elements on the Tensile and Impact Properties of A356 Alloy. Mater. Sci. Eng. A 2014, 610, 100–115. [Google Scholar] [CrossRef]
- Carneiro, V.H.; Puga, H.; Meireles, J. Heat Treatment as a Route to Tailor the Yield-Damping Properties in A356 Alloys. Mater. Sci. Eng. A 2018, 729, 1–8. [Google Scholar] [CrossRef]
- Liu, G.; Gao, J.; Che, C.; Lu, Z.; Yi, W.; Zhang, L. Optimization of Casting Means and Heat Treatment Routines for Improving Mechanical and Corrosion Resistance Properties of A356-0.54Sc Casting Alloy. Mater. Today Commun. 2020, 24, 101227. [Google Scholar] [CrossRef]
- Macêdo Neto, J.C.; Miranda, A.G.; Verçosa, L.A.; García del Pino, G.; Rodrigues, R.A.; Nascimento, D.A.; Vieira, A.R.C. Influência do Tratamento Térmico de Normalização na Microestrutura e Propriedades Mecânicas do aço sae 1035 Utilizado em Motocicletas in Engenharia de Materiais e Metalúrgica: Tudo à sua Volta 2, 2nd ed.; Atena Editora: Curitiba, Paraná, Brazil, 2021; Volume 3, pp. 29–39. [Google Scholar] [CrossRef]
- Ibrahim, M.; Abdelaziz, M.; Samuel, A.; Doty, H.; Samuel, F. Spheroidization and Coarsening of Eutectic Si Particles in Al-Si-Based Alloys. Adv. Mater. Sci. Eng. 2021, 2021, 6678280. [Google Scholar] [CrossRef]
- Santos, J. Al-7Si-Mg Semi-Solid Castings–Microstructure and Mechanical Properties; Jönköping University: Jönköping, Sweden, 2018. [Google Scholar]
- Mota, L.N.; Garcia del Pino, G.; Kieling, A.; Mendes, C.S.A.; De Oliveira, J.B.; De Mendonça, K.P. Characterization of 5052 Aluminum Alloy under Different Heat Treatments. Eur. Acad. Res. 2020, 8, 164–178. [Google Scholar] [CrossRef]
- Jiang, B.; Ji, Z.; Hu, M.; Xu, H.; Xu, S. A Novel Modifier on Eutectic Si and Mechanical Properties of Al-Si Alloy. Mater. Lett. 2019, 239, 13–16. [Google Scholar] [CrossRef]
- Mørtsell, E.A.; Qian, F.; Marioara, C.D.; Li, Y. Precipitation in an A356 Foundry Alloy with Cu Additions—A Transmission Electron Microscopy Study. J. Alloys Compd. 2019, 785, 1106–1114. [Google Scholar] [CrossRef]
- Abdulwahab, M.; Madugu, I.A.; Yaro, S.A.; Hassan, S.B.; Popoola, A.P.I. Effects of Multiple-Step Thermal Ageing Treatment on the Hardness Characteristics of A356.0-Type Al–Si–Mg Alloy. Mater. Des. 2011, 32, 1159–1166. [Google Scholar] [CrossRef]
- Gupta, M.K.; Singh, R.; Kumar, S.; Singh, H.; Kumar, N. Microstructure and Mechanical Properties of A356 Aluminum Alloy Processed by Different Casting Techniques. Mater. Today Proc. 2020, 26, 2062–2066. [Google Scholar] [CrossRef]
- Mishra, S.K.; Roy, H.; Lohar, A.K.; Samanta, S.K.; Tiwari, S.; Dutta, K. A Comparative Assessment of Crystallite Size and Lattice Strain in Differently Cast A356 Aluminium Alloy. IOP Conf. Ser. Mater. Sci. Eng. 2015, 75, 012001. [Google Scholar] [CrossRef]
- Society for Experimental Mechanics (US). Handbook of Measurement of Residual Stresses; Lu, J., Ed.; Fairmont Press: Lilburn, GA, USA, 1996. [Google Scholar]
- Ordoñez, S.; Palominos, P.; Martínez, F.; Fernández, H.; Bustos, O.; Lisboa, J. Evolución Microestructural de Una Aleación de Aluminio A356 Con y Sin Reforzamiento. de SiC Sometida a Molienda Mecánica. Matéria (Rio Janeiro) 2018, 23, 12144. [Google Scholar] [CrossRef]
- Seo, Y.S.; Nasir, L.M.M.; Zuhailawati, H.; Anasyida, A.S. Microstructure Evolution of Conventional and Semi-Solid A356 Alloy with Addition of Strontium. Adv. Mater. Res. 2015, 1087, 488–492. [Google Scholar] [CrossRef]
- Tunçay, T.; Bayoğlu, S. The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy. Metall. Mater. Trans. B 2017, 48, 794–804. [Google Scholar] [CrossRef]
- Haghshenas, M.; Zarei-Hanzaki, A.; Fatemi-Varzaneh, S.M. A Study of the Si-Phase Growth Mechanism in Thixocast (A356) Alloy during Hot Deformation. Int. J. Mater. Res. 2008, 99, 208–211. [Google Scholar] [CrossRef]
- Leo, P.; Cerri, E. Silicon Particle Damage in a Thixocast A356 Aluminium Alloy. Metall. Sci. Tecnol. 2003, 21. [Google Scholar]
- Tavitas-Medrano, F.J.; Gruzleski, J.E.; Samuel, F.H.; Valtierra, S.; Doty, H.W. Effect of Mg and Sr-Modification on the Mechanical Properties of 319-Type Aluminum Cast Alloys Subjected to Artificial Aging. Mater. Sci. Eng. A 2008, 480, 356–364. [Google Scholar] [CrossRef]
- AMNE ELAHI, M.; SHABESTARI, S.G. Effect of Various Melt and Heat Treatment Conditions on Impact Toughness of A356 Aluminum Alloy. Trans. Nonferrous Met. Soc. China 2016, 26, 956–965. [Google Scholar] [CrossRef]
- Merlin, M.; Timelli, G.; Bonollo, F.; Garagnani, G.L. Impact Behaviour of A356 Alloy for Low-Pressure Die Casting Automotive Wheels. J. Mater. Process. Technol. 2009, 209, 1060–1073. [Google Scholar] [CrossRef]
- Asghar, G.; Peng, L.; Fu, P.; Yuan, L.; Liu, Y. Role of Mg2Si Precipitates Size in Determining the Ductility of A357 Cast Alloy. Mater. Des. 2020, 186, 108280. [Google Scholar] [CrossRef]
- Azimi, H.; Nourouzi, S.; Jamaati, R. Materials Science & Engineering A Effects of Ti Particles and T6 Heat Treatment on the Microstructure and Mechanical Properties of A356 Alloy Fabricated by Compocasting. Mater. Sci. Eng. A 2021, 818, 141443. [Google Scholar] [CrossRef]
- Akhyar, H.; Iswanto, P.T.; Malau, V. Non Treatment, T4 and T6 on Tensile Strength of Al-5.9cu-1.9mg Alloy Investigated by Variation of Casting Temperature. Mater. Sci. Forum 2018, 929, 56–62. [Google Scholar] [CrossRef]
- So, T.I.; Jung, H.C.; Lee, C.D.; Shin, K.S. Effects of T6-Treatment on the Defect Susceptibility of Tensile Strength to Microporosity Variation in Low Pressure Die-Cast A356 Alloy. Met. Mater. Int. 2015, 21, 842–849. [Google Scholar] [CrossRef]
- Lima, A.M.; García del Pino, G.; Valin Rivera, J.L.; Chong, K.B.; Bezazi, A.; Costa de Macêdo Neto, J.C.; da Silva Valenzuela, M.G.; Dehaini, J.; Valenzuela Díaz, F. Characterization of Polyester Resin Nanocomposite with Curauá, Fibers and Graphene Oxide. Rev. Cienc. Técnicas Agropecu. 2019, 28, 1–10. [Google Scholar] [CrossRef]
- Cai, Q.; Mendis, C.L.; Chang, I.T.H.; Fan, Z. Effect of Short T6 Heat Treatment on the Microstructure and the Mechanical Properties of Newly Developed Die-Cast Al–Si–Mg–Mn Alloys. Mater. Sci. Eng. A 2020, 788, 139610. [Google Scholar] [CrossRef]
- Chang, L.; Ding, Y.; Guo, B.; Ding, J.; Xia, X.; Tang, Y.; Li, C.; Sun, X.; Guo, J.; Song, K.; et al. Modification Mechanism and Tensile Property of Al-9Si-0.4Mg-0.1Cu Alloy. Mater. Charact. 2022, 184, 111693. [Google Scholar] [CrossRef]
- Kang, H.; Jang, H.; Oh, S.; Yoon, P.; Lee, G.; Park, J.; Kim, E.; Choi, Y. Effects of Solution Treatment Temperature and Time on the Porosities and Mechanical Properties of Vacuum Die-Casted and T6 Heat-Treated Al–Si–Mg Alloy. Vacuum 2021, 193, 110536. [Google Scholar] [CrossRef]
- Tocci, M.; Pola, A.; Gelfi, M.; La Vecchia, G.M. Effect of a New High-Pressure Heat Treatment on Additively Manufactured AlSi10Mg Alloy. Metall. Mater. Trans. A 2020, 51, 4799–4811. [Google Scholar] [CrossRef]
- Filizzolab, D.M.; Santosa, T.S.; Mirandaa, A.G.; Costaa, J.C.M.; Nascimentoc, N.R.; Santosb, M.D.; Belloa, R.H.; Pinob, G.G.; Netoa, J.C.M. Annealing Effect on the Microstructure and Mechanical Properties of AA 5182 Aluminum Alloy. Mater. Res. 2021, 24, e20200545. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, Y.; Wang, Q.; Zhang, X.; Li, R.; Zhang, B. Effect of Pouring and Cooling Temperatures on Microstructures and Mechanical Properties of As-Cast and T6 Treated A356 Alloy. China Foundry 2019, 16, 380–385. [Google Scholar] [CrossRef]
- Xu, C.; Xiao, W.; Zheng, R.; Hanada, S.; Yamagata, H.; Ma, C. The Synergic Effects of Sc and Zr on the Microstructure and Mechanical Properties of Al-Si-Mg Alloy. Mater. Des. 2015, 88, 485–492. [Google Scholar] [CrossRef]
- Rashnoo, K.; Jafar, M.; Azadi, M.; Azadi, M. Influences of Reinforcement and Displacement Rate on Microstructure, Mechanical Properties and Fracture Behaviors of Cylinder-Head Aluminum Alloy. Mater. Chem. Phys. 2020, 255, 123441. [Google Scholar] [CrossRef]
- Zhu, M.; Jian, Z.; Yang, G.; Zhou, Y. Effects of T6 Heat Treatment on the Microstructure, Tensile Properties, and Fracture Behavior of the Modified A356 Alloys. Mater. Des. 2012, 36, 243–249. [Google Scholar] [CrossRef]
- Wang, Q.G.; Apelian, D.; Lados, D.A. Fatigue behavior of A356-T6 aluminum cast alloys. Part I: Effect of casting defects. J. Light Met. 2001, 1, 73–84. [Google Scholar] [CrossRef]
- Shivkumar, S.; Keller, C.; Apelian, D. Porosity in aluminum castings: A review. Int. Mater. Rev. 1990, 35, 245–264. [Google Scholar]
- Cáceres, C.H.; Selling, B.I. Casting defects and the tensile properties of an Al–Si–Mg alloy. Mater. Sci. Eng. A 1996, 220, 109–116. [Google Scholar] [CrossRef]
- Nogita, K.; Dahle, A.K. Phase formation in hypoeutectic and eutectic Al–Si alloys. Mater. Sci. Eng. A 2001, A335, 108–116. [Google Scholar]
- Moustafa, M.A.; Samuel, A.M.; Doty, H.W. Effect of solution heat treatment and aging on the microstructure of A356.2 aluminum alloy. J. Mater. Sci. 2002, 37, 4211–4224. [Google Scholar]
- Djurdjevic, M.B.; Sokolowski, J.H. Design of optimal heat treatment properties for 319 aluminum alloy using quality index methodology. J. Mater. Process. Technol. 2004, 148, 268–278. [Google Scholar] [CrossRef]
- Lee, S.; Backerud, L.; Chai, G. Effect of solution treatment on the microstructure and tensile properties of A356 alloys. Metall. Mater. Trans. A 2001, 32, 1931–1941. [Google Scholar]
- Samuel, F.H.; Doty, H.W.; Samuel, A.M. Microstructure-fracture characteristics in A356 alloys. Mater. Charact. 1997, 39, 511–527. [Google Scholar]
- Liu, Z.Y.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S. Microstructural features and tensile properties of A356 aluminum alloy. J. Mater. Sci. 2003, 38, 455–463. [Google Scholar]
- Srivatsan, T.S.; Sudarshan, T.S.; Lavernia, E.J. The fatigue and fracture behavior of cast aluminum alloy A356. Mater. Sci. Eng. A 1996, A197, 1–9. [Google Scholar]
- Marquis, F.D.S.; Darrieulat, M.; Baroux, B. Effect of microstructure and environment on the fatigue crack initiation of A356 aluminum alloy. Int. J. Fatigue 2003, 25, 109–118. [Google Scholar]
- Wang, Q.G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys. Mater. Sci. Eng. A 2003, A356, 107–116. [Google Scholar] [CrossRef]
- Górka, J.; Stawarz, M.; Głowacka, M.; Kowalczyk-Gajewska, K. Fracture toughness and fatigue behavior of A356 aluminum alloy after different heat treatment cycles. Metals 2020, 10, 1354. [Google Scholar] [CrossRef]
- Rao, A.G.; Reddy, G.M.; Rao, K.P. Effect of aging treatment on microstructure and mechanical properties of A356 aluminum alloy. Trans. Indian Inst. Met. 2009, 62, 469–473. [Google Scholar]
Type of Treatment | Stages | Specifications |
---|---|---|
T6—12 h (Standard) | Homogenization | 530 °C ± 5 °C/6 h |
Water cooling | 65 °C ± 15 °C | |
Cooling time in water | 6 min ± 1 min | |
Artificial ageing | 140 °C ± 5 °C/6 h | |
T6—7 h (After reduction in time) | Homogenization | 545 °C ± 5 °C/3.5 h |
Water cooling | 60 °C ± 10 °C | |
Cooling time in water | 6 min ± 1 min | |
Artificial ageing | 150 °C ± 5 °C/3.5 h |
Alloy | Cu | Si | Mg | Zn | Mn | Fe | Ti | Ni | Pb | Cr | Sr |
---|---|---|---|---|---|---|---|---|---|---|---|
A356 (Standard) | 0.10 max. | 6.5–7.5 | 0.25–0.45 | 0.10 max. | 0.10 max. | 0.2 max. | 0.2 max. | 0.05 max. | 0.05 max. | 0.05 max. | - |
A-356 (T6—12 h) | 0.0113 | 6.8638 | 0.2659 | 0.004 | 0.0021 | 0.1049 | 0.1177 | 0.0012 | 0.0041 | 0.0001 | 0.0178 |
A-356 (T6—7 h) | 0.0127 | 6.7965 | 0.2871 | 0.005 | 0.0033 | 0.1211 | 0.1087 | 0.0016 | 0.0034 | 0.0006 | 0.0165 |
Factor | N | Mean | Standard Deviation | CI 95% |
---|---|---|---|---|
0 h | 19 | 4.021 | 1.657 | (3.355; 4.688) |
12 h | 19 | 2.794 | 1.432 | (2.128; 3.461) |
7 h | 19 | 3.325 | 1.226 | (2.659; 3.992) |
Source | Df | SQ Seq | Contribution | SQ (Aj.) | QM (Aj.) | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Factor | 2 | 14.39 | 11.26% | 14.39 | 7.193 | 3.43 | 0.040 |
Error | 54 | 113.36 | 88.74% | 113.36 | 2.099 | ||
Total | 56 | 127.75 | 100.00% |
Difference Levels | Difference In Means | Standard Error of the Difference | CI 95% | t-Value | Adjusted p-Value |
---|---|---|---|---|---|
7 h–0 h | −0.696 | 0.470 | (−1.829; 0.437) | −1.48 | 0.308 |
12 h–0 h | −1.227 | 0.470 | (−2.360; −0.093) | −2.61 | 0.031 |
12 h–7 h | −0.531 | 0.470 | (−1.664; 0.603) | −1.13 | 0.500 |
Source | Df | SQ (Aj.) | QM (Aj.) | F-Value | p-Value |
---|---|---|---|---|---|
TT | 2 | 2270.45 | 1135.23 | 975.37 | 0.000 |
Error | 27 | 31.43 | 1.16 | ||
Total | 29 | 2301.88 |
Difference Levels | Difference of Means | Difference in Standard Error | CI 95% | t-Value | Adjusted p-Value |
---|---|---|---|---|---|
12 h–0 h | 20.950 | 0.482 | (19.753; 22.147) | 43.42 | 0.000 |
7 h–0 h | 13.850 | 0.482 | (12.653; 15.047) | 28.71 | 0.000 |
7 h–12 h | −7.100 | 0.482 | (−8.297; −5.903) | −14.72 | 0.000 |
Source | Df | SQ Seq | Contribution | SQ (Aj.) | QM (Aj.) | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Factor | 2 | 82.41 | 92.86% | 82.418 | 41.2089 | 97.60 | 0.000 |
Error | 15 | 6.33 | 7.14% | 6.333 | 0.4222 | ||
Total | 17 | 88.75 | 100.00% |
Treatment Times | Difference of the Means | Difference of Standard Error | CI 95% | t-Value | Adjusted p-Value |
---|---|---|---|---|---|
12 h–0 h | 4.93 | 0.375 | (3.960; 5.907) | 13.15 | 0.000 |
7 h–0 h | 4.00 | 0.375 | (3.026; 4.974) | 10.66 | 0.000 |
7 h–12 h | −0.93 | 0.375 | (−1.907; 0.040) | −2.49 | 0.061 |
Experiments | Yield -0.2% (MPa) | Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|
NT | 110.52 (±11.5) | 177.63 (±14) | 1.86 (±0.28) |
12 h | 192.92 (±4.98) | 269.71 (±2.37) | 3.38 (±0.43) |
7 h | 226.58 (±3.76) | 264.78 (±4.27) | 3.41 (±0.47) |
* Value-p | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida Rodrigues, R.; Costa, J.C.M.d.; Kieling, A.C.; Reis do Nascimento, N.; Souza de Oliveira, J.; Silva da Cunha, J.; Coelho Pinheiro, S.; Garcia del Pino, G.; Valin Rivera, J.L.; Valin Fernández, M.; et al. Effect of Different T6 Heat Treatment Conditions on the Microstructure and Mechanical Properties of Al-7%Si-0.35% Mg (A356) Alloy for Use in Motorcycles. Metals 2025, 15, 692. https://doi.org/10.3390/met15070692
Almeida Rodrigues R, Costa JCMd, Kieling AC, Reis do Nascimento N, Souza de Oliveira J, Silva da Cunha J, Coelho Pinheiro S, Garcia del Pino G, Valin Rivera JL, Valin Fernández M, et al. Effect of Different T6 Heat Treatment Conditions on the Microstructure and Mechanical Properties of Al-7%Si-0.35% Mg (A356) Alloy for Use in Motorcycles. Metals. 2025; 15(7):692. https://doi.org/10.3390/met15070692
Chicago/Turabian StyleAlmeida Rodrigues, Reinaldo, João Carlos Martins da Costa, Antonio Claudio Kieling, Nayra Reis do Nascimento, Joaquim Souza de Oliveira, Joziane Silva da Cunha, Samantha Coelho Pinheiro, Gilberto Garcia del Pino, José Luis Valin Rivera, Meylí Valin Fernández, and et al. 2025. "Effect of Different T6 Heat Treatment Conditions on the Microstructure and Mechanical Properties of Al-7%Si-0.35% Mg (A356) Alloy for Use in Motorcycles" Metals 15, no. 7: 692. https://doi.org/10.3390/met15070692
APA StyleAlmeida Rodrigues, R., Costa, J. C. M. d., Kieling, A. C., Reis do Nascimento, N., Souza de Oliveira, J., Silva da Cunha, J., Coelho Pinheiro, S., Garcia del Pino, G., Valin Rivera, J. L., Valin Fernández, M., & Costa de Macedo Neto, J. (2025). Effect of Different T6 Heat Treatment Conditions on the Microstructure and Mechanical Properties of Al-7%Si-0.35% Mg (A356) Alloy for Use in Motorcycles. Metals, 15(7), 692. https://doi.org/10.3390/met15070692