Multiphase Identification Through Automatic Classification from Large-Scale Nanoindentation Mapping Compared to an EBSD-Machine Learning Approach
Abstract
:1. Introduction
2. Experimental and Materials
3. Results and Discussion
3.1. Case Study 1: Tempered Dual-Phase Steel
3.2. Case Study 2: Complex-Phase Steel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calcagnotto, M.; Ponge, D.; Raabe, D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2012, 43, 37–46. [Google Scholar] [CrossRef]
- Bandi, B.; Slater, C.; Farrugia, D.; Davis, C. Development of Desirable Fine Ferrite Grain Size and Random Second Phase Dual-Phase Steel Microstructures Using Composition and/or Processing Modifications. Metals 2022, 12, 1158. [Google Scholar] [CrossRef]
- Peng-Heng, C.; Preban, A.G. The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel. Acta Metall. 1985, 33, 897–903. [Google Scholar] [CrossRef]
- Dastur, P.; Slater, C.; Bandi, B.; Davis, C. Development of a High Ductility DP Steel Using a Segregation Neutralization Approach: Benchmarked Against a Commercial Dual Phase Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2024, 55, 2681–2691. [Google Scholar] [CrossRef]
- Vander Voort, G.F. Phase Identification by Selective Etching. In Applied Metallography; Springer: Boston, MA, USA, 1986; pp. 1–19. [Google Scholar] [CrossRef]
- Zhao, H.S.; Zhu, X.; Li, W.; Jin, X.J.; Wang, L.; Jiao, H.; Jiang, D.M. Austenite stability for quenching and partitioning treated steel revealed by colour tint-etching method. Mater. Sci. Technol. 2014, 30, 1008–1013. [Google Scholar] [CrossRef]
- Bandoh, S.; Matsumura, O.; Skauma, Y. An Improved Tint with Etching Mixed Method for High Strength Microstructures. Trans. ISIJ 1988, 28, 569–574. [Google Scholar] [CrossRef]
- Martinez Ostormujof, T.; Purushottam Raj Purohit, R.R.P.; Breumier, S.; Gey, N.; Salib, M.; Germain, L. Deep Learning for automated phase segmentation in EBSD maps. A Case Study Dual Phase Steel microstructures. Mater. Charact. 2022, 184, 111638. [Google Scholar] [CrossRef]
- Tomaz, R.F.; Brandão Santos, D.; Camey, K.; Barbosa, R.; Spangler Andrade, M.; Pérez Escobar, D. Complex phase quantification methodology using electron backscatter diffraction (EBSD) on low manganese high temperature processed steel (HTP) microalloyed steel. J. Mater. Res. Technol. 2019, 8, 2423–2431. [Google Scholar] [CrossRef]
- Ryde, L. Application of EBSD to analysis of microstructures in commercial steels. Mater. Sci. Technol. 2006, 22, 1297–1306. [Google Scholar] [CrossRef]
- Zhu, K.; Barbier, D.; Iung, T. Characterization and quantification methods of complex BCC matrix microstructures in advanced high strength steels. J. Mater. Sci. 2013, 48, 413–423. [Google Scholar] [CrossRef]
- Breumier, S.; Ostormujof, T.M.; Frincu, B.; Gey, N.; Couturier, A.; Loukachenko, N.; Aba-perea, P.E.; Germain, L. Leveraging EBSD data by deep learning for bainite, ferrite and martensite segmentation. Mater. Charact. 2022, 186, 111805. [Google Scholar] [CrossRef]
- Zhang, F.; Ruimi, A.; Field, D.P. Phase Identification of Dual-Phase (DP980) Steels by Electron Backscatter Diffraction and Nanoindentation Techniques. Microsc. Microanal. 2016, 22, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ando, R.; Matsuno, T.; Matsuda, T.; Yamashita, N.; Yokota, H.; Goto, K.; Watanabe, I. Analysis of nano-hardness distribution near the ferrite/martensite interface in a dual phase steel with factorization of its scattering behavior. ISIJ Int. 2021, 61, 473–480. [Google Scholar] [CrossRef]
- Pavlina, E.J.; Van Tyne, C.J. Correlation of Yield Strength and Tensile Strength with Hardness for Steels. J. Mater. Eng. Perform. 2008, 17, 888–893. [Google Scholar] [CrossRef]
- Advanced Phase Discrimination|EBSD Techniques to Differentiate Between Phases—Oxford Instruments, (n.d.). Available online: https://www.ebsd.com/ois-ebsd-system/advanced-phase-discrimination (accessed on 5 January 2024).
- Aarnts, M.; Twisk, F.; Rijkenberg, R. Microstructural Quantification of Multi-Phase Steels (Micro-Quant); Publications Office: Luxembourg, 2011. [Google Scholar] [CrossRef]
- Avramovic-Cingara, G.; Ososkov, Y.; Jain, M.K.; Wilkinson, D.S. Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Mater. Sci. Eng. A 2009, 516, 7–16. [Google Scholar] [CrossRef]
- Matsuno, T.; Ando, R.; Yamashita, N.; Yokota, H.; Goto, K.; Watanabe, I. Analysis of preliminary local hardening close to the ferrite–martensite interface in dual-phase steel by a combination of finite element simulation and nanoindentation test. Int. J. Mech. Sci. 2020, 180, 105663. [Google Scholar] [CrossRef]
- Bacalhau, J.B.; Moreira Afonso, C.R. Effect of Ni addition on bainite microstructure of low-carbon special bar quality steels and its influence on CCT diagrams. J. Mater. Res. Technol. 2021, 15, 1266–1283. [Google Scholar] [CrossRef]
- Badinier, G.; Sinclair, C.W.; Sauvage, X.; Wang, X.; Bylik, V.; Gouné, M.; Danoix, F. Microstructural heterogeneity and its relationship to the strength of martensite. Mater. Sci. Eng. A 2015, 638, 329–339. [Google Scholar] [CrossRef]
- Franceschi, M.; Morales-Rivas, L.; Cordova-Tapia, E.; Jimenez, J.A.; Dabalà, M.; Garcia-Mateo, C. Study of bainite and martensite tempering in a medium C high Si steel. microstructural disparities and equilibrium convergence. J. Mater. Res. Technol. 2024, 32, 2931–2944. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slater, C.; Bandi, B.; Dastur, P.; Davis, C. Multiphase Identification Through Automatic Classification from Large-Scale Nanoindentation Mapping Compared to an EBSD-Machine Learning Approach. Metals 2025, 15, 636. https://doi.org/10.3390/met15060636
Slater C, Bandi B, Dastur P, Davis C. Multiphase Identification Through Automatic Classification from Large-Scale Nanoindentation Mapping Compared to an EBSD-Machine Learning Approach. Metals. 2025; 15(6):636. https://doi.org/10.3390/met15060636
Chicago/Turabian StyleSlater, Carl, Bharath Bandi, Pedram Dastur, and Claire Davis. 2025. "Multiphase Identification Through Automatic Classification from Large-Scale Nanoindentation Mapping Compared to an EBSD-Machine Learning Approach" Metals 15, no. 6: 636. https://doi.org/10.3390/met15060636
APA StyleSlater, C., Bandi, B., Dastur, P., & Davis, C. (2025). Multiphase Identification Through Automatic Classification from Large-Scale Nanoindentation Mapping Compared to an EBSD-Machine Learning Approach. Metals, 15(6), 636. https://doi.org/10.3390/met15060636