Extraction of REEs and Other Elements from Estonian Graptolite-Argillite and Phosphorite Mineral Acid Solutions
Abstract
1. Introduction
2. Experimental Section
2.1. Leaching Step of GA and PH Samples
2.2. Details of the Extraction Process
2.3. Experimental Methods for Determining the Detailed Chemical Composition of GA and PH
3. Results and Discussion
3.1. GA Raw Deposit Analysis After Leaching with Modified Aqua Regia Using ICP-MS/MS Method
3.2. GA and PH Composition Analysis After Leaching with HCl and HNO3 Aqueous Solutions Using the ICP-MS/MS Method
3.3. Extraction Process of GA and PH Using Different Extractants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Kamitani, M. Rare earth minerals and resources in the world. J. Alloys Compd. 2006, 408–412, 1339–1343. [Google Scholar] [CrossRef]
- McLennan, S.M.; Ross Taylor, S. Geology, Geochemistry and Natural Abundances. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; ISBN 978-1-119-95143-8. [Google Scholar]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Chen, J.; Kallem, P.; Banat, F.; Qiu, H. Recent advances in selective separation technologies of rare earth elements: A review. J. Environ. Chem. Eng. 2022, 10, 107104. [Google Scholar] [CrossRef]
- Ilankoon, I.M.S.K.; Dushyantha, N.P.; Mancheri, N.; Edirisinghe, P.M.; Neethling, S.J.; Ratnayake, N.P.; Rohitha, L.P.S.; Dissanayake, D.M.D.O.K.; Premasiri, H.M.R.; Abeysinghe, A.M.K.B.; et al. Constraints to rare earth elements supply diversification: Evidence from an industry survey. J. Clean. Prod. 2022, 331, 129932. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Z.; Chen, C. Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals 2017, 7, 203. [Google Scholar] [CrossRef]
- Tukker, A. Rare Earth Elements Supply Restrictions: Market Failures, Not Scarcity, Hamper Their Current Use in High-Tech Applications. Environ. Sci. Technol. 2014, 48, 9973–9974. [Google Scholar] [CrossRef]
- Coey, J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Podmiljšak, B.; Saje, B.; Jenuš, P.; Tomše, T.; Kobe, S.; Žužek, K.; Šturm, S. The Future of Permanent-Magnet-Based Electric Motors: How Will Rare Earths Affect Electrification? Materials 2024, 17, 848. [Google Scholar] [CrossRef]
- Bailey, G.; Mancheri, N.; Van Acker, K. Sustainability of Permanent Rare Earth Magnet Motors in (H)EV Industry. J. Sustain. Metall. 2017, 3, 611–626. [Google Scholar] [CrossRef]
- Fernandez, V. Rare-earth elements market: A historical and financial perspective. Resour. Policy 2017, 53, 26–45. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, P.; Chen, W.; Wang, L.; Wang, Q.-C.; Chen, W.-Q. Supply and demand conflicts of critical heavy rare earth element: Lessons from gadolinium. Resour. Conserv. Recycl. 2023, 199, 107254. [Google Scholar] [CrossRef]
- Tokimatsu, K.; Murakami, S.; Adachi, T.; Ii, R.; Yasuoka, R.; Nishio, M. Long-term demand and supply of non-ferrous mineral resources by a mineral balance model. Miner. Econ. 2017, 30, 193–206. [Google Scholar] [CrossRef]
- Voolma, M.; Soesoo, A.; Hade, S.; Hints, R.; Kallaste, T. Geochemical heterogeneity of estonian graptolite argillite. Oil Shale 2013, 30, 377. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Tõnsuaadu, K.; Einard, M.; Mikli, V.; Kivimäe, E.-K.; Kallaste, T.; Trikkel, A. Thermal Behavior of Estonian Graptolite–Argillite from Different Deposits. Processes 2022, 10, 1986. [Google Scholar] [CrossRef]
- Vind, J.; Tamm, K. Review of the extraction of key metallic values from black shales in relation to their geological and mineralogical properties. Miner. Eng. 2021, 174, 107271. [Google Scholar] [CrossRef]
- Vind, J.; Ofili, S.; Mänd, K.; Soesoo, A.; Kirsimäe, K. Redox-sensitive trace metal hyper-enrichment in Tremadocian Alum Shale (graptolite argillite) in northwestern Estonia, Baltic Palaeobasin. Chem. Geol. 2023, 640, 121746. [Google Scholar] [CrossRef]
- Menert, A.; Korb, T.; Orupõld, K.; Teemusk, A.; Sepp, H.; Mander, Ü.; Ilmjärv, T.; Truu, J.; Paiste, P.; Kirsimäe, K.; et al. Methanogenesis and metal leaching on anaerobic decomposition of graptolite argillite. Environ. Technol. Innov. 2023, 31, 103139. [Google Scholar] [CrossRef]
- Yang, X.; Tamm, K.; Piir, I.; Kuusik, R.; Trikkel, A.; Tõnsuaadu, K. Evaluation of Estonian phosphate rock by flotation. Miner. Eng. 2021, 171, 107127. [Google Scholar] [CrossRef]
- Brahim, J.A.; Hak, S.A.; Achiou, B.; Boulif, R.; Beniazza, R.; Benhida, R. Kinetics and mechanisms of leaching of rare earth elements from secondary resources. Miner. Eng. 2022, 177, 107351. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Peelman, S.; Sun, Z.H.I.; Sietsma, J.; Yang, Y. Hydrometallurgical Extraction of Rare Earth Elements from Low Grade Mine Tailings. In Rare Metal Technology 2016; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 17–29. ISBN 978-1-119-27483-4. [Google Scholar]
- Costis, S.; Mueller, K.K.; Coudert, L.; Neculita, C.M.; Reynier, N.; Blais, J.-F. Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. J. Geochem. Explor. 2021, 221, 106699. [Google Scholar] [CrossRef]
- El-Nadi, Y.A.; El-Hefny, N.E.; Aly, H.F. Solvent extraction and recovery of Y(III) and Yb(III) from fluorspar mineral. Int. J. Miner. Metall. Mater. 2013, 20, 713–719. [Google Scholar] [CrossRef]
- Liu, T.; Chen, J. Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol. 2021, 276, 119263. [Google Scholar] [CrossRef]
- Bandara, H.M.D.; Field, K.D.; Emmert, M.H. Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem. 2016, 18, 753–759. [Google Scholar] [CrossRef]
- Arrachart, G.; Couturier, J.; Dourdain, S.; Levard, C.; Pellet-Rostaing, S. Recovery of Rare Earth Elements (REEs) Using Ionic Solvents. Processes 2021, 9, 1202. [Google Scholar] [CrossRef]
- Wang, K.; Adidharma, H.; Radosz, M.; Wan, P.; Xu, X.; Russell, C.K.; Tian, H.; Fan, M.; Yu, J. Recovery of rare earth elements with ionic liquids. Green Chem. 2017, 19, 4469–4493. [Google Scholar] [CrossRef]
- Baba, Y.; Kubota, F.; Kamiya, N.; Goto, M. Kinetics and mechanisms of leaching of rare earth elements from secondary resources. J. Chem. Eng. Jpn. 2011, 44, 679–685. [Google Scholar] [CrossRef]
- Soesoo, A. Main Precambrian and Paleozoic Mineral Resources of Estonia. Asp. Min. Miner. Sci. 2021, 6, 729–732. [Google Scholar] [CrossRef]
- Soesoo, A.; Vind, J.; Hade, S. Uranium and Thorium Resources of Estonia. Minerals 2020, 10, 798. [Google Scholar] [CrossRef]
- Hade, S.; Soesoo, A. Estonian graptolite argillites revisited: A future resource? Oil Shale 2014, 31, 4. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Liu, T.; Huang, J.; Xue, N. Vanadium extraction from black shale: Enhanced leaching due to fluoride addition. Hydrometallurgy 2019, 187, 141–148. [Google Scholar] [CrossRef]
- Sevim, F.; Saraç, H.; Kocakerim, M.M.; Yartaşı, A. Dissolution Kinetics of Phosphate Ore in H2SO4 Solutions. Ind. Eng. Chem. Res. 2003, 42, 2052–2057. [Google Scholar] [CrossRef]
- Clavier, N.; Podor, R.; Dacheux, N. Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 2011, 31, 941–976. [Google Scholar] [CrossRef]
- Senanayake, G. Gold leaching by copper(II) in ammoniacal thiosulphate solutions in the presence of additives. Part I: A review of the effect of hard–soft and Lewis acid-base properties and interactions of ions. Hydrometallurgy 2012, 115–116, 21–29. [Google Scholar] [CrossRef]
- Watling, H.R. Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources. Minerals 2014, 5, 1–60. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Chen, H. Advances in Isotope Geochronology and Isotope Geochemistry: A Preface. J. Earth Sci. 2022, 33, 1–4. [Google Scholar] [CrossRef]
- Waste and Recycling. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling_en (accessed on 18 November 2022).
- Jürjo, S.; Oll, O.; Paiste, P.; Külaviir, M.; Zhao, J.; Lust, E. Electrochemical co-reduction of praseodymium and bismuth from 1-butyl-1-methylpyrrolidinium bis (fluorosulfonyl) imide ionic liquid. Electrochem. Commun. 2022, 138, 107285. [Google Scholar] [CrossRef]
- Jürjo, S.; Oll, O.; Lust, E. Yttrium Separation from Phosphorite Extract Using Liquid Extraction with Room Temperature Ionic Liquids Followed by Electrochemical Reduction. Metals 2024, 14, 927. [Google Scholar] [CrossRef]
- Jürjo, S.; Siinor, L.; Siimenson, C.; Paiste, P.; Lust, E. Two-Step Solvent Extraction of Radioactive Elements and Rare Earths from Estonian Phosphorite Ore Using Nitrated Aliquat 336 and Bis(2-ethylhexyl) Phosphate. Minerals 2021, 11, 388. [Google Scholar] [CrossRef]
- Sepúlveda, R.; Toro, N.; Hernández, P.; Navarro, P.; Vargas, C.; Gálvez, E.; Castillo, J. Solvent Extraction of Metal Ions from Synthetic Copper Leaching Solution Using R4NCy. Metals 2022, 12, 1053. [Google Scholar] [CrossRef]
- Gorzin, H.; Ghaemi, A.; Hemmati, A.; Maleki, A. Studies on effective interaction parameters in extraction of Pr and Nd using Aliquat 336 from NdFeB magnet-leaching solution: Multiple response optimizations by desirability function. J. Mol. Liq. 2021, 324, 115123. [Google Scholar] [CrossRef]
- Cheremisina, O.; Ponomareva, M.; Sergeev, V.; Mashukova, Y.; Balandinsky, D. Extraction of Rare Earth Metals by Solid-Phase Extractants from Phosphoric Acid Solution. Metals 2021, 11, 991. [Google Scholar] [CrossRef]
- Quijada-Maldonado, E.; Romero, J. Solvent extraction of rare-earth elements with ionic liquids: Toward a selective and sustainable extraction of these valuable elements. Curr. Opin. Green Sustain. Chem. 2021, 27, 100428. [Google Scholar] [CrossRef]
- Kaim, V.; Rintala, J.; He, C. Selective recovery of rare earth elements from e-waste via ionic liquid extraction: A review. Sep. Purif. Technol. 2023, 306, 122699. [Google Scholar] [CrossRef]
- Gergoric, M.; Ekberg, C.; Steenari, B.-M.; Retegan, T. Separation of Heavy Rare-Earth Elements from Light Rare-Earth Elements via Solvent Extraction from a Neodymium Magnet Leachate and the Effects of Diluents. J. Sustain. Metall. 2017, 3, 601–610. [Google Scholar] [CrossRef]
E % | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | ± | Y | ± | La | ± | Ce | ± | Pr | ± | Nd | ± | Sm | ± | Eu | ± | |
EMIMDEPO4 | 99.5 | 1.0 | 99.5 | 0.9 | 99.8 | 1.1 | 99.6 | 0.5 | 99.5 | 0.3 | 99.6 | 0.7 | 99.6 | 0.8 | 99.6 | 1.5 |
Aliquat336 | 0 | 0 | 0 | 0 | 79.6 | 3.6 | 24.2 | 2.1 | 0 | 0 | 0 | 0 | 1.4 | 0.2 | 0 | 0 |
TBP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.1 | 0.5 | 0 | 0 |
Gd | ± | Tb | ± | Dy | ± | Ho | ± | Er | ± | Tm | ± | Yb | ± | Lu | ± | |
EMIMDEPO4 | 99.6 | 1.5 | 99.6 | 2 | 99.6 | 0.8 | 99.5 | 0.9 | 99.5 | 0.7 | 99.5 | 1.2 | 99.4 | 2 | 99.3 | 1.2 |
Aliquat336 | 2.3 | 0.1 | 0 | 0 | 0 | 0 | 0.7 | 0.1 | 1.7 | 0.1 | 0 | 0 | 1.6 | 0.1 | 0 | 0 |
TBP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
E % | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | ± | Y | ± | La | ± | Ce | ± | Pr | ± | Nd | ± | Sm | ± | Eu | ± | |
5M HCl | 98.08 | 1.0 | 16.55 | 2.9 | −4.89 | 1.1 | −4.62 | 0.5 | −2.96 | 0.3 | −3.01 | 0.7 | −4.06 | 0.8 | −4.21 | 1.5 |
3M HCl | 75.57 | 2.3 | 13.39 | 2.3 | −6.92 | 3.6 | −6.98 | 2.1 | −4.72 | 0 | −6.59 | 0 | −5.48 | 0.2 | 5.4 | 0 |
2M HCl | 67.02 | 3.3 | 39.04 | 1.9 | 4.18 | 0.2 | 1.97 | 0.1 | 1.27 | 0.1 | 3.22 | 0.2 | 4.29 | 0.2 | 4.08 | 0.2 |
1M HCl | 17.57 | 1.7 | 92.07 | 3.5 | 0.38 | 0 | 2.64 | 0 | 3.43 | 0 | 3.78 | 0 | 18.53 | 0.5 | 29.11 | 0 |
Gd | ± | Tb | ± | Dy | ± | Ho | ± | Er | ± | Tm | ± | Yb | ± | Lu | ± | |
5M HCl | −2.33 | 1.5 | −0.42 | 2 | 3.35 | 0.8 | 9.63 | 0.9 | 20.79 | 0.7 | 44.16 | 1.2 | 65.61 | 2 | 72.33 | 1.2 |
3M HCl | −3.88 | 0.1 | −1.05 | 0 | 4.93 | 0 | 7.6 | 0.1 | 14.28 | 0.1 | 32.22 | 0 | 44.34 | 0.1 | 43.27 | 0 |
2M HCl | 5.27 | 0 | 12.64 | 0 | 21.63 | 0 | 26.8 | 0 | 36.39 | 0 | 59.44 | 0 | 50.08 | 0 | 36.72 | 0 |
1M HCl | 30.59 | 1.5 | 59.99 | 2.9 | 79.35 | 3.9 | 84.59 | 4.2 | 82.39 | 4.1 | 92.71 | 4.6 | 47.4 | 2.3 | 67.6 | 3.4 |
E % | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | ± | Y | ± | La | ± | Ce | ± | Pr | ± | Nd | ± | Sm | ± | Eu | ± | |
0.03 M HNO3 | 99.30 | 1.00 | 99.57 | 1.00 | 92.98 | 1.00 | 94.51 | 1.00 | 94.91 | 1.00 | 95.27 | 1.00 | 97.39 | 1.00 | 98.01 | 1.00 |
7.5 M HNO3 | 92.86 | 1.00 | 27.06 | 2.7 | 2.60 | 0.26 | 3.27 | 0.32 | 6.61 | 0.66 | 3.52 | 0.35 | 4.80 | 0.48 | 5.27 | 0.52 |
Gd | ± | Tb | ± | Dy | ± | Ho | ± | Er | ± | Tm | ± | Yb | ± | Lu | ± | |
0.03 M HNO3 | 97.77 | 1.00 | 98.81 | 1.00 | 99.24 | 1.00 | 99.53 | 1.00 | 99.50 | 1.00 | 99.55 | 1.00 | 99.44 | 1.00 | 99.62 | 1.00 |
7.5 M HNO3 | 4.60 | 0.46 | 8.02 | 0.80 | 14.12 | 1.41 | 19.10 | 1.91 | 27.70 | 2.77 | 43.17 | 4.31 | 58.38 | 5.38 | 66.38 | 6.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jürjo, S.; Siinor, L.; Siimenson, C.; Oll, O.; Lust, E. Extraction of REEs and Other Elements from Estonian Graptolite-Argillite and Phosphorite Mineral Acid Solutions. Metals 2025, 15, 608. https://doi.org/10.3390/met15060608
Jürjo S, Siinor L, Siimenson C, Oll O, Lust E. Extraction of REEs and Other Elements from Estonian Graptolite-Argillite and Phosphorite Mineral Acid Solutions. Metals. 2025; 15(6):608. https://doi.org/10.3390/met15060608
Chicago/Turabian StyleJürjo, Silvester, Liis Siinor, Carolin Siimenson, Ove Oll, and Enn Lust. 2025. "Extraction of REEs and Other Elements from Estonian Graptolite-Argillite and Phosphorite Mineral Acid Solutions" Metals 15, no. 6: 608. https://doi.org/10.3390/met15060608
APA StyleJürjo, S., Siinor, L., Siimenson, C., Oll, O., & Lust, E. (2025). Extraction of REEs and Other Elements from Estonian Graptolite-Argillite and Phosphorite Mineral Acid Solutions. Metals, 15(6), 608. https://doi.org/10.3390/met15060608