Effect of Aging at Different Temperatures on Microstructure Evolution of 347H Heat-Resistant Steel-Welded Joints
Abstract
:1. Introduction
2. Experiment Procedure
3. Result and Discussions
3.1. Microstructure Analysis of Welded Joints
3.2. Effect of Aging Temperature on the Microstructure of Welded Joints
3.2.1. Weld
3.2.2. Heat-Affected Zone
3.2.3. Base Metal
3.3. Thermodynamic Calculations
3.4. Quantitative Analysis of the Second Phase
3.4.1. Second Phase at Different Aging Temperatures
3.4.2. Second Phase in Different Regions of Welded Joints
3.5. EBSD Analysis
3.6. Microhardness Distribution
4. Conclusions
- The weld structure of 347H consists of austenitic dendrites and interdendritic ferrites in the weld zone. The HAZ and BM in the as-welded sample are composed of equiaxed grains. The average grain size in the HAZ region is 61% larger than in the BM region. The microhardness ranking is as follows: BM > FZ > HAZ > W. The microhardness in the HAZ region is lower, primarily due to the relatively coarse grains and fewer second-phase particles.
- After aging at 700 °C, the hardness values in all regions of the weld joint increase significantly due to the precipitation of M23C6 and MX phases. The size of M23C6 in the base material is four times that of the MX phase. When the aging temperature exceeds 800 °C, the stability of the M23C6 phase decreases, and the diffusion rate of Nb in the matrix increases, allowing the MX phase to preferentially grow and remain stable. The formation of the MX phase competitively consumes carbon, thus limiting the precipitation of M23C66.
- After aging at 800 °C, the size of the MX phase in the weld zone austenite is significantly smaller than that of the MX phase at the γ/δ interface. The nucleation and growth of the MX phase are controlled by the diffusion of Nb. Due to the higher energy of the γ/δ interface and the higher Nb content in ferrite, the MX phase readily forms along the γ/δ interface, consuming Nb from the ferrite.
- As the aging temperature increases, the hardness in the HAZ and BM regions first increases and then decreases. After aging at 800 °C, the hardness decreases because M23C6 no longer precipitates. After aging at 900 °C, the hardness in the HAZ and BM regions increases significantly due to the large amount of MX phase precipitation and its increased size. As the aging temperature rises, the hardness in the W and FZ regions gradually decreases, mainly due to the reduction in ferrite content between dendrites, coarsening of second-phase particles, weakening of the pinning effect, and grain growth.
- After aging at 900 °C, the size of the MX phase follows the order: W > HAZ > BM. Nb in ferrite provides the chemical driving force for the precipitation of the MX phase, and the γ/δ interface provides favorable sites for the nucleation and growth of the MX phase. Therefore, the MX phase size is the largest in the W region. Due to the residual stress and smaller grain boundary area in the HAZ region, its MX phase size is second only to that in the W region.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Wu, C.; Wang, X.; Sun, S.; Cui, D.; Pan, S.; Sheng, H. A Review of Eutectic Salts as Phase Change Energy Storage Materials in the Context of Concentrated Solar Power. Int. J. Heat. Mass. Transf. 2023, 205, 123904. [Google Scholar] [CrossRef]
- Chi, C.; Yu, H.; Dong, J.; Liu, W.; Cheng, S.; Liu, Z.; Xie, X. The Precipitation Strengthening Behavior of Cu-Rich Phase in Nb Contained Advanced Fe–Cr–Ni Type Austenitic Heat Resistant Steel for USC Power Plant Application. Prog. Nat. Sci. Mater. Int. 2012, 22, 175–185. [Google Scholar] [CrossRef]
- Abe, F. Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above. Engineering 2015, 1, 211–224. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhou, X.; Liu, C.; Yu, L.; Li, C.; Ning, B. Processing Maps and Microstructural Evolution of the Type 347H Austenitic Heat-Resistant Stainless Steel. J. Mater. Res. 2015, 30, 2090–2100. [Google Scholar] [CrossRef]
- Ramirez–Ledesma, A.L.; Acosta–Vargas, L.A.; Juarez–Islas, J.A. Suppression of Interdendritic Segregation during Welding of a 347 Austenitic Stainless Steel Pipe Reactors. Eng. Fail. Anal. 2020, 114, 104589. [Google Scholar] [CrossRef]
- Wang, J.; Yu, S. Study on Susceptibility and Mechanism of Reheat Cracking in Welded Joint of Type 347 Austenitic Stainless Steel. Int. J. Chem. Eng. 2022, 2022, 2016388. [Google Scholar] [CrossRef]
- Xu, Y.; Nie, H.; Li, J.; Xiao, X.; Zhu, C.; Zhao, J. Growth of Creep Life of Type-347H Austenitic Stainless Steel by Micro-Alloying Elements. Mater. Sci. Eng. A 2010, 528, 643–649. [Google Scholar] [CrossRef]
- Chandra, K.; Kain, V.; Tewari, R. Microstructural and Electrochemical Characterisation of Heat-Treated 347 Stainless Steel with Different Phases. Corros. Sci. 2013, 67, 118–129. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, C.; Liu, Y.; Guo, Q.; Li, H. Coarsening Behavior of MX Carbonitrides in Type 347H Heat-Resistant Austenitic Steel during Thermal Aging. Int. J. Min. Met. Mater. 2016, 23, 283–293. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Liu, Y.; Guo, Q.; Liu, C.; Yu, L.; Li, C.; Li, H. Precipitation Behavior of Type 347H Heat-Resistant Austenitic Steel during Long-Term High-Temperature Aging. J. Mater. Res. 2015, 30, 3642–3652. [Google Scholar] [CrossRef]
- Hong, C.-W.; Heo, Y.-U.; Heo, N.-H.; Kim, S. Coherent to Incoherent Transition of Precipitates during Rupture Test in TP347H Austenitic Stainless Steels. Mater. Charact. 2016, 115, 71–82. [Google Scholar] [CrossRef]
- Antunes, P.D.; Silva, C.C.; Correa, E.O.; Tavares, S.S.M. Influence of the Heat Input and Aging Treatment on Microstructure and Mechanical Properties of AISI 317 L Steel Weldments Using 0020 Robotic–Pulsed GMAW. Int. J. Adv. Manuf. Technol. 2019, 105, 5151–5163. [Google Scholar] [CrossRef]
- Bai, J.M. Effect of Carbon on Microstructure and Mechanical Properties of HR3C Type Heat Resistant Steels. Mater. Sci. 2020, 784, 138943. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, C.; Li, C.; Ma, Z.; Huang, Y.; Wang, Z.; Li, W. Microstructure Evolution and Mechanical Properties of Linear Friction Welded S31042 Heat-Resistant Steel. J. Mater. Sci. Technol. 2018, 34, 653–659. [Google Scholar] [CrossRef]
- Ibrahim, O.H.; Ibrahim, I.S.; Khalifa, T.A.F. Effect of Aging on the Toughness of Austenitic and Duplex Stainless Steel Weldments. J. Mater. Sci. Technol. 2010, 26, 810–816. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Li, Y.; Lu, S. Effect of Aging Treatment on the Microstructures and Mechanical Properties Evolution of 25Cr-20Ni Austenitic Stainless Steel Weldments with Different Nb Contents. J. Mater. Sci. Technol. 2019, 35, 520–529. [Google Scholar] [CrossRef]
- Ueda, S.; Kadoi, K.; Tokita, S.; Inoue, H. Relationship between Alloy Element and Weld Solidification Cracking Susceptibility of Austenitic Stainless Steel. ISIJ Int. 2019, 59, 1323–1329. [Google Scholar] [CrossRef]
- Rehouma, K.M.; Shabadi, R.; Taillard, R.; Bouabdallah, M.; Imad, A. Effect of Aging at 700 °C on Ferrite Transformation in a 316L/308L Weldment. Mater. Manuf. Process. 2012, 27, 1370–1375. [Google Scholar] [CrossRef]
- Bai, G.; Lu, S.; Li, D.; Li, Y. Intergranular Corrosion Behavior Associated with Delta-Ferrite Transformation of Ti-Modified Super304H Austenitic Stainless Steel. Corros. Sci. 2015, 90, 347–358. [Google Scholar] [CrossRef]
- Malhotra, D.; Shahi, A.S. Weld Metal Composition and Aging Influence on Metallurgical, Corrosion and Fatigue Crack Growth Behavior of Austenitic Stainless Steel Welds. Mater. Res. Express 2019, 6, 106555. [Google Scholar] [CrossRef]
- Cui, C.; Gu, K.; Qiu, Y.; Weng, Z.; Zhang, M.; Wang, J. The Effects of Post-Weld Aging and Cryogenic Treatment on Self-Fusion Welded Austenitic Stainless Steel. J. Mater. Res. Technol. 2022, 21, 648–661. [Google Scholar] [CrossRef]
- Luppo, M.i.; Hazarabedian, A.; Ovejero-García, J. Effects of Delta Ferrite on Hydrogen Embrittlement of Austenitic Stainless Steel Welds. Corros. Sci. 1999, 41, 87–103. [Google Scholar] [CrossRef]
- Ben Rhouma, A.; Amadou, T.; Sidhom, H.; Braham, C. Correlation between Microstructure and Intergranular Corrosion Behavior of Low Delta-Ferrite Content AISI 316L Aged in the Range 550–700 °C. J. Alloys Compd. 2017, 708, 871–886. [Google Scholar] [CrossRef]
- Guan, K.; Xu, X.; Xu, H.; Wang, Z. Effect of Aging at 700 °C on Precipitation and Toughness of AISI 321 and AISI 347 Austenitic Stainless Steel Welds. Nucl. Eng. Des. 2005, 235, 2485–2494. [Google Scholar] [CrossRef]
- Golański, G.; Purzyńska, H. Effect of Service on Microstructure and Mechanical Properties of Nb-Stabilised Austenitic Stainless Steel. Int. J. Press. Vessel. Pip. 2022, 195, 104574. [Google Scholar] [CrossRef]
- Siva Reddy, V.; Kaushik, S.C.; Ranjan, K.R.; Tyagi, S.K. State-of-the-Art of Solar Thermal Power Plants—A Review. Renew. Sustain. Energy Rev. 2013, 27, 258–273. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Bao, H.; Cheng, S. Evolution of Precipitates of S31042 Heat Resistant Steel During 700 °C Aging. J. Iron Steel Res. Int. 2013, 20, 113–121. [Google Scholar] [CrossRef]
- AWS A5.9/A5.9M; Specification for Bare Stainless Steel Welding Electrodes and Rods. American Welding Society: Miami, FL, USA, 2022.
- GB/T 4340.1-2024; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. National Standardization Management Committee of the People’s Republic of China: Beijing, China, 2024.
- Hu, C.; Wang, C.; Ma, X.; Zhu, Z.; Jiang, P.; Mi, G. EBSD Study on Magnetic Field Altering Crystal Texture and Grain Growth during Laser-Hybrid Welding. Mater. Des. 2022, 216, 110587. [Google Scholar] [CrossRef]
- Li, K.; Li, C.-S.; Song, Y.; Li, B.; Dong, J.; Wang, R.; Zhang, Y. Evaluation of the Microstructure and Performance of Fe-21Cr-15Ni-6Mn-Nb Nonmagnetic Stainless Steel Welded Joints. J. Mater. Eng. Perform. 2019, 28, 5220–5232. [Google Scholar] [CrossRef]
- Wang, H.; Du, H.; Wei, Y.; Hou, L.; Liu, X.; Wei, H.; Liu, B.; Jia, J. Precipitation and Properties at Elevated Temperature in Austenitic Heat-Resistant Steels—A Review. Steel Res. Int. 2021, 92, 2000378. [Google Scholar] [CrossRef]
- Bouchouicha, B.; Zemri, M.; Benguediab, M.; Imad, A. Influence of the Ferrite Rate on the Tenacity of a Welded Joint in Austenitic Stainless Steel: Experimental Study and Numerical Modelling. Comput. Mater. Sci. 2009, 45, 336–341. [Google Scholar] [CrossRef]
- David, S.A.; Siefert, J.A.; Feng, Z. Welding and Weldability of Candidate Ferritic Alloys for Future Advanced Ultrasupercritical Fossil Power Plants. Sci. Technol. Weld. Join. 2013, 18, 631–651. [Google Scholar] [CrossRef]
- Garcia, C.; De Tiedra, M.P.; Blanco, Y.; Martin, O.; Martin, F. Intergranular Corrosion of Welded Joints of Austenitic Stainless Steels Studied by Using an Electrochemical Minicell. Corros. Sci. 2008, 50, 2390–2397. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhou, X.; Liu, C.; Yu, J.; Huang, Y.; Li, H.; Li, W. Precipitation and Hot Deformation Behavior of Austenitic Heat-Resistant Steels: A Review. J. Mater. Sci. Technol. 2017, 33, 1448–1456. [Google Scholar] [CrossRef]
- Fukunaga, T.; Kaneko, K.; Kawano, R.; Ueda, K.; Yamada, K.; Nakada, N.; Kikuchi, M.; Barnard, J.S.; Midgley, P.A. Formation of Intergranular M23C6 in Sensitized Type-347 Stainless Steel. ISIJ Int. 2014, 54, 148–152. [Google Scholar] [CrossRef]
- Kaneko, K.; Fukunaga, T.; Yamada, K.; Nakada, N.; Kikuchi, M.; Saghi, Z.; Barnard, J.S.; Midgley, P.A. Formation of M23C6-Type Precipitates and Chromium-Depleted Zones in Austenite Stainless Steel. Scr. Mater. 2011, 65, 509–512. [Google Scholar] [CrossRef]
- Bai, X.; Pan, J.; Chen, G.; Liu, J.; Wang, J.; Zhang, T.; Tang, W. Effect of High Temperature Aging on Microstructure and Mechanical Properties of HR3C Heat Resistant Steel. Mater. Sci. Technol. 2014, 30, 205–210. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Peng, W.; Xiang, T.; Xu, Z.; Yang, J. Effect of Simulated Welding Thermal Cycles on Microstructure and Mechanical Properties of Coarse-Grain Heat-Affected Zone of High Nitrogen Austenitic Stainless Steel. Mater. Charact. 2019, 149, 206–217. [Google Scholar] [CrossRef]
- Pierce, D.; Haynes, A.; Hughes, J.; Graves, R.; Maziasz, P.; Muralidharan, G.; Shyam, A.; Wang, B.; England, R.; Daniel, C. High Temperature Materials for Heavy Duty Diesel Engines: Historical and Future Trends. Prog. Mater. Sci. 2019, 103, 109–179. [Google Scholar] [CrossRef]
- Glazoff, M.V.; Gao, M.C.; Capolungo, L.; Brady, M.P.; Ilevbare, G.O.; Yamamoto, Y.; Ren, Q.-Q.; Poplawsky, J.D.; Yu, J.; Zhang, F. Concurrent Precipitation of Nb(C,N) and Metastable M23C6 in Alloy 347H at 700 °C and 750 °C: Computer Simulations and Comparison to Experiment. JOM 2022, 74, 1444–1452. [Google Scholar] [CrossRef]
- Xia, Z.X.; Zhang, C.; Fan, N.Q.; Zhao, Y.F.; Xue, F.; Liu, S.J. Improve Creep Properties of Reduced Activation Steels by Controlling Precipitation Behaviors. Mater. Sci. Eng. A 2012, 545, 91–96. [Google Scholar] [CrossRef]
- Bonvalet-Rolland, M.; Philippe, T.; Ågren, J. Kinetic Theory of Nucleation in Multicomponent Systems: An Application of the Thermodynamic Extremum Principle. Acta Mater. 2019, 171, 1–7. [Google Scholar] [CrossRef]
- Xiong, J.; Li, T.; Yuan, X.; Mao, G.; Yang, J.; Yang, L.; Xu, J. Improvement in Weldment of Dissimilar 9% CR Heat-Resistant Steels by Post-Weld Heat Treatment. Metals 2020, 10, 1321. [Google Scholar] [CrossRef]
- Lehto, P.; Remes, H. EBSD Characterisation of Grain Size Distribution and Grain Sub-Structures for Ferritic Steel Weld Metals. Weld. World 2022, 66, 363–377. [Google Scholar] [CrossRef]
- Mironov, S.; Sato, Y.S.; Kokawa, H.; Inoue, H.; Tsuge, S. Structural Response of Superaustenitic Stainless Steel to Friction Stir Welding. Acta Mater. 2011, 59, 5472–5481. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Liang, Y.; Liu, P.; Yang, L. The Microstructure and Mechanical Properties of Multi-Strand, Composite Welding-Wire Welded Joints of High Nitrogen Austenitic Stainless Steel. Materials 2019, 12, 2944. [Google Scholar] [CrossRef]
- Kumar, S.; Shahi, A.S. Effect of Heat Input on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints. Mater. Des. 2011, 32, 3617–3623. [Google Scholar] [CrossRef]
- Omiogbemi, I.M.B.; Pandey, S.; Yawas, D.S.; Afolayan, M.O.; Dauda, E.T. Effect of Welding Conditions and Flux Compositions on the Metallurgy of Welded Duplex Stainless Steel. Mater. Today Proc. 2022, 49, 1162–1168. [Google Scholar] [CrossRef]
- García-García, V.; Reyes-Calderón, F.; Frasco-García, O.D.; Alcantar-Modragón, N. Mechanical Behavior of Austenitic Stainless-Steel Welds with Variable Content of δ-Ferrite in the Heat-Affected Zone. Eng. Fail. Anal. 2022, 140, 106618. [Google Scholar] [CrossRef]
Material | C | Si | Mn | P | S | Ni | Cr | Nb |
---|---|---|---|---|---|---|---|---|
Base metal | 0.05 | 0.5 | 1.1 | 0.020 | 0.001 | 9.1 | 17.4 | 0.50 |
Weld wire | 0.05 | 0.3 | 1.3 | 0.020 | 0.010 | 9.5 | 19.1 | 0.52 |
Samples | Number Density/μm2 |
---|---|
700 °C | 0.44 |
800 °C | 0.59 |
900 °C | 0.91 |
Samples | W | FZ | HAZ | BM |
---|---|---|---|---|
E | 188.8 | 199.4 | 191.1 | 204.5 |
700 °C | 220.4 | 224.2 | 214.8 | 224.3 |
800 °C | 205.7 | 212.4 | 204.2 | 210.1 |
900 °C | 183.0 | 184.5 | 234.9 | 233.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Tian, G.; Wang, D.; Cao, K.; Zhao, A. Effect of Aging at Different Temperatures on Microstructure Evolution of 347H Heat-Resistant Steel-Welded Joints. Metals 2025, 15, 518. https://doi.org/10.3390/met15050518
Xiao J, Tian G, Wang D, Cao K, Zhao A. Effect of Aging at Different Temperatures on Microstructure Evolution of 347H Heat-Resistant Steel-Welded Joints. Metals. 2025; 15(5):518. https://doi.org/10.3390/met15050518
Chicago/Turabian StyleXiao, Jun, Geng Tian, Di Wang, Kuo Cao, and Aimin Zhao. 2025. "Effect of Aging at Different Temperatures on Microstructure Evolution of 347H Heat-Resistant Steel-Welded Joints" Metals 15, no. 5: 518. https://doi.org/10.3390/met15050518
APA StyleXiao, J., Tian, G., Wang, D., Cao, K., & Zhao, A. (2025). Effect of Aging at Different Temperatures on Microstructure Evolution of 347H Heat-Resistant Steel-Welded Joints. Metals, 15(5), 518. https://doi.org/10.3390/met15050518