Numerical Modelling on Metallic Materials
1. Introduction
2. Outline of This Topic
2.1. Atomic-Scale and Microstructural Evolution Modelling
2.2. Meso- and Macro-Scale Mechanical Behaviour Simulations
2.3. Emerging Computational Techniques and Advanced Applications
3. Concluding Remarks
Funding
Conflicts of Interest
List of Contributions
- Baidak, S.T.; Lukoyanov, A.V. Common topological features in band structure of RNiSb and RSb compounds for R= Tb, Dy, Ho. Materials 2023, 16, 242. https://doi.org/10.3390/ma16010242.
- Xiang, G.; Luo, X.; Cao, T.; Zhang, A.; Yu, H. Atomic diffusion and crystal structure evolution at the Fe-Ti interface: molecular dynamics simulations. Materials 2022, 15, 6302. https://doi.org/10.3390/ma15186302.
- Zheng, H.; Sun, J.; Guo, N.; Wang, M. Atomic Research on the Diffusion Behavior, Mechanical Properties and Fracture Mechanism of Fe/Cu Solid–Liquid Interface. Coatings 2022, 12, 1299. https://doi.org/10.3390/coatings12091299.
- Lv, B.; Chen, C.; Zhang, F.; Poletaev, G.M.; Rakitin, R.Y. Potentials for describing interatomic interactions in γFe-Mn-CN system. Metals 2022, 12, 982. https://doi.org/10.3390/met12060982.
- Fashu, S.; Huang, B.; Wang, N. Modification of Precipitate Coarsening Kinetics by Intragranular Nanoparticles—A Phase Field Study. Metals 2022, 12, 892. https://doi.org/10.3390/met12060892.
- Kumnorkaew, T.; Lian, J.; Uthaisangsuk, V.; Bleck, W. Kinetic model of isothermal bainitic transformation of low carbon steels under ausforming conditions. Alloys 2022, 1, 93–115. https://doi.org/10.3390/alloys1010007.
- Chen, X.; Wu, B.; Li, J.; Zhang, X.; Zuo, P.; Wu, X.; Li, J. Microstructural Evolution in Large-Section Plastic Mould Steel during Multi-Directional Forging. Metals 2022, 12, 1175. https://doi.org/10.3390/met12071175.
- Ciepielewski, R.; Miedzińska, D. A Study of Aluminum Honeycomb Structures under Dynamic Loading, with Consideration Given to the Effects of Air Leakage. Materials 2023, 16, 2211. https://doi.org/10.3390/ma16062211.
- Zhao, Y.; Du, C.; Wang, P.; Meng, W.; Li, C. The mechanism of in-situ laser polishing and its effect on the surface quality of nickel-based alloy fabricated by selective laser melting. Metals 2022, 12, 778. https://doi.org/10.3390/met12050778.
- Alshoaibi, A.M. Fatigue crack growth analysis under constant amplitude loading using finite element method. Materials 2022, 15, 2937. https://doi.org/10.3390/ma15082937.
- Ma, W.; Sun, Z.; Wu, H.; Xu, L.; Zeng, Y.; Wang, Y.; Huang, G. Buckling Analysis of Thin-Walled Circular Shells under Local Axial Compression using Vector Form Intrinsic Finite Element Method. Metals 2023, 13, 564. https://doi.org/10.3390/met13030564.
- Lopez-Garcia, R.D.; Medina-Juárez, I.; Maldonado-Reyes, A. Effect of quenching parameters on distortion phenomena in AISI 4340 steel. Metals 2022, 12, 759. https://doi.org/10.3390/met12050759.
- Peng, Y.; Kong, Z.; Dinh, B.H.; Nguyen, H.H.; Cao, T.S.; Papazafeiropoulos, G.; Vu, Q.V. Web Bend-Buckling of Steel Plate Girders Reinforced by Two Longitudinal Stiffeners with Various Cross-Section Shapes. Metals 2023, 13, 323. https://doi.org/10.3390/met13020323.
- Huang, Z.; Yu, X. Numerical simulation study of expanding fracture of 45 steel cylindrical shell under different detonation pressure. Materials 2022, 15, 3980. https://doi.org/10.3390/ma15113980.
- He, T.; Chen, Y. Influence of Mold Design on Shrinkage Porosity of Ti-6Al-4V Alloy Ingots. Metals 2022, 12, 2122. https://doi.org/10.3390/met12122122.
- Kim, M.S.; Kim, H.T.; Choi, Y.H.; Kim, J.H.; Kim, S.K.; Lee, J.M. A new computational method for predicting ductile failure of 304L stainless steel. Metals 2022, 12, 1309. https://doi.org/10.3390/met12081309.
- Wallat, L.; Altschuh, P.; Reder, M.; Nestler, B.; Poehler, F. Computational design and characterisation of gyroid structures with different gradient functions for porosity adjustment. Materials 2022, 15, 3730. https://doi.org/10.3390/ma15103730.
- Liu, M.; Yan, P.; Liu, P.; Qiao, J.; Yang, Z. An improved particle-swarm-optimization algorithm for a prediction model of steel slab temperature. Appl. Sci. 2022, 12, 11550. https://doi.org/10.3390/app122211550.
- Zhao, T.; Gao, Y.; Shi, R.; Li, Z.; Shi, Q. Structure of Randomly Distributed Nanochain Aggregates on Silicon Substrates: Modeling and Optical Absorption Characteristics. Materials 2022, 15, 4778. https://doi.org/10.3390/ma15144778.
- Chen, Y.; Gao, Y.; Guo, C.; Guo, Y.; Guo, Z.; Liu, Y.; Liu, T. Effect of the Addition of Steel Fibers on the Bonding Interface and Tensile Properties of Explosion-Welded 2A12 Aluminum Alloy and SS-304 Steel. Materials 2023, 16, 116. https://doi.org/10.3390/ma16010116.
References
- Rappaz, M.; Bellet, M.; Deville, M.O.; Snyder, R. Numerical Modeling in Materials Science and Engineering; Springer: Berlin, Germany, 2003; Volume 20. [Google Scholar]
- Liu, H.; Xu, X.; Zhang, J.; Liu, Z.; He, Y.; Zhao, W.; Liu, Z. The state of the art for numerical simulations of the effect of the microstructure and its evolution in the metal-cutting processes. Int. J. Mach. Tools Manuf. 2022, 177, 103890. [Google Scholar] [CrossRef]
- DebRoy, T.; Mukherjee, T.; Wei, H.L.; Elmer, J.W.; Milewski, J.O. Metallurgy, mechanistic models and machine learning in metal printing. Nat. Rev. Mater. 2021, 6, 48–68. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Traxel, K.D. Invited review article: Metal-additive manufacturing—Modeling strategies for application-optimized designs. Addit. Manuf. 2018, 22, 758–774. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, W.; Singh, U.P. Further observations and review of numerical simulations of sheet metal punching. Int. J. Adv. Manuf. Technol. 2006, 30, 638–644. [Google Scholar] [CrossRef]
- Dal, M.; Fabbro, R. An overview of the state of art in laser welding simulation. Opt. Laser Technol. 2016, 78, 2–14. [Google Scholar] [CrossRef]
- Thomas, B.G. Review on modeling and simulation of continuous casting. Steel Res. Int. 2018, 89, 1700312. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Q.M. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. Int. J. Impact Eng. 2018, 112, 74–115. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Ge, P.; Wu, T. A review on modelling and simulation of laser additive manufacturing: Heat transfer, microstructure evolutions and mechanical properties. Coatings 2022, 12, 1277. [Google Scholar] [CrossRef]
- Kiran, A.; Hodek, J.; Vavřík, J.; Urbánek, M.; Džugan, J. Numerical simulation development and computational optimization for directed energy deposition additive manufacturing process. Materials 2020, 13, 2666. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Ding, J.; Bridgeman, P.; Williams, S. A three-dimensional wire-feeding model for heat and metal transfer, fluid flow, and bead shape in wire plasma arc additive manufacturing. J. Manuf. Process. 2022, 83, 300–312. [Google Scholar] [CrossRef]
- Gu, H.; Li, L. Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space. Int. J. Heat Mass Transf. 2019, 140, 51–65. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Zhu, Z.H. A comprehensive review on metal laser additive manufacturing in space: Modeling and perspectives. Acta Astronaut. 2024, 222, 403–421. [Google Scholar] [CrossRef]
- Zhou, N.; Lv, D.C.; Zhang, H.L.; McAllister, D.; Zhang, F.; Mills, M.J.; Wang, Y. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation. Acta Mater. 2014, 65, 270–286. [Google Scholar] [CrossRef]
- Zepeda-Ruiz, L.A.; Stukowski, A.; Oppelstrup, T.; Bulatov, V.V. Probing the limits of metal plasticity with molecular dynamics simulations. Nature 2017, 550, 492–495. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, S.; Sun, Y.; Chen, X. Numerical Modelling on Metallic Materials. Metals 2025, 15, 423. https://doi.org/10.3390/met15040423
Wen S, Sun Y, Chen X. Numerical Modelling on Metallic Materials. Metals. 2025; 15(4):423. https://doi.org/10.3390/met15040423
Chicago/Turabian StyleWen, Shuwen, Yongle Sun, and Xin Chen. 2025. "Numerical Modelling on Metallic Materials" Metals 15, no. 4: 423. https://doi.org/10.3390/met15040423
APA StyleWen, S., Sun, Y., & Chen, X. (2025). Numerical Modelling on Metallic Materials. Metals, 15(4), 423. https://doi.org/10.3390/met15040423