Observation and Analysis of Metallic Interface Bridging and Self-Healing Under Electromagnetic Shocking Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sealing Welding Treatment
2.3. Electromagnetic Shocking Treatment
2.4. SEM Observation
3. Results
4. Discussion
5. Conclusions
- (1)
- Without macro deformation and significant temperature increasing, EST can targetedly adjust interface complexion by interface pre-melting, such as promoting interface bridging and self-healing.
- (2)
- Under the effect of EMP energy during the EST, coupling with appropriate thermal activation, alloy interface can energetically absorb EMP vibration energy and tends to occur nonlinear pre-melting.
- (3)
- This work might provide new insights for the interface evolution mechanism of the solid alloys under the effect of EMP energy or (quasi-) periodic energy fluctuation as well as new design strategy of interface complexion modification of solid alloys by utilizing EMP energy or (quasi-) periodic energy fluctuation.
- (4)
- Without significant surface temperature increasing and macro deformation, the EST can promote interface bridging and self-healing of the metals and alloys, which is benificial for the self-healing of micro cracks and the further improvement of the service performance of the metal parts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dijk, N.V.; Zwaag, S.V.D. Self-Healing Phenomena in Metals. Adv. Mater. Interfaces 2018, 5, 1800226. [Google Scholar] [CrossRef]
- Barr, C.M.; Duong, T.; Bufford, D.C.; Milne, Z.; Molkeri, A.; Heckman, N.M.; Adams, D.P.; Srivastava, A.; Hattar, K.; Demkowicz, M.J.; et al. Autonomous healing of fatigue cracks via cold welding. Nature 2023, 620, 552–556. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, J.Y.; Wang, C.; Sun, S.H.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 2010, 5, 218–224. [Google Scholar] [CrossRef]
- Hu, X.G.; Guo, C.; Huang, Y.H.; Xu, Z.; Shi, Z.F.; Zhou, F.; Li, G.; Zhou, Y.; Li, Y.; Li, Z.Y.; et al. Liquid-induced healing of cracks in nickel-based superalloy fabricated by laser powder bed fusion. Acta Mater. 2024, 267, 119731. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Sun, M.Y.; Xu, B.; Hu, X.; Liu, S.; Xie, B.J.; Li, D.Z. Evolution of the interfacial microstructure during the plastic deformation bonding of copper. Mater. Sci. Eng. A 2019, 746, 1–10. [Google Scholar] [CrossRef]
- Xie, B.J.; Yu, Z.X.; Jiang, H.Y.; Xu, B.; Wang, C.Y.; Zhang, J.Y.; Sun, M.Y.; Li, D.Z.; Li, Y.Y. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding. J. Mater. Sci. Technol. 2022, 96, 199–211. [Google Scholar] [CrossRef]
- Zhang, Z.; Ning, B.K.; Qian, W.F.; Wang, S.; Wang, N.; Chen, Y.N.; Li, Y.; Zhang, Q.Y.; Li, H.Z.; Wang, S.P.; et al. Promoting crack self-healing of nanocomposite coating by double slip systemic semi-coherent interface dislocation. Mater. Res. Lett. 2024, 12, 467–476. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.J.; He, X.D.; Duan, J. Self-healing of damage inside metals triggered by electropulsing stimuli. Sci. Rep. 2017, 7, 7097. [Google Scholar] [CrossRef]
- Zheng, X.G.; Shi, Y.N.; Lu, K. Electro-Healing cracks in nickel. Mater. Sci. Eng. A 2013, 561, 52–59. [Google Scholar] [CrossRef]
- Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel. Mater. Sci. Eng. A 2008, 478, 93–100. [Google Scholar] [CrossRef]
- Hosoi, A.; Nagahama, T.; Ju, Y. Fatigue crack healing by a controlled high density electric current field. Mater. Sci. Eng. A 2012, 533, 38–42. [Google Scholar] [CrossRef]
- Putz, B.; Glushko, O.; Cordill, M.J. Electromigration in Gold Films on Flexible Polyimide Substrates as a Self-healing Mechanism. Mater. Res. Lett. 2016, 4, 43–47. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Feng, S.B.; Sun, M.Y.; Xu, B.; Li, D.Z. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding. J. Mater. Sci. Technol. 2019, 35, 1671–1680. [Google Scholar] [CrossRef]
- Wang, F.; Qian, D.S.; Hua, L.; Mao, H.J.; Xie, L.C. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment. Sci. Rep. 2019, 9, 11315. [Google Scholar] [CrossRef]
- Xie, L.H.; Guo, H.J.; Song, Y.L.; Hua, L.; Wang, L.Q.; Zhang, L.C. Novel approach of electroshock treatment for defect repair in near-β titanium alloy manufactured via directed energy deposition. Metall. Mater. Trans. A 2021, 52, 457–461. [Google Scholar] [CrossRef]
- Cai, Z.P.; Qian, C.K.; Zhang, X.; Dai, N.; Wu, Y.; Ji, W. Mechanism and application of mechanical property improvements in engineering materials by pulsed magnetic treatment: A review. Friction 2024, 12, 2139–2166. [Google Scholar] [CrossRef]
- Qian, C.K.; Liu, Q.; Xiong, X.Y.; Ye, B.J.; Li, Z.Y.; Li, K.J.; Ying, S.J.; Zhang, H.J.; Huang, D.M.; Zhang, X.; et al. Mechanism for magnetic field induced structural relaxation and accompanying fracture toughness improvement of the thermal spraying coating. Mater. Des. 2022, 223, 111113. [Google Scholar] [CrossRef]
- Qian, C.K.; Liu, Q.; Li, K.J.; Ma, L.; Cai, Z.P. Electrochemical corrosion behavior variation of WC-10Co4Cr coating subjected to different magnetic treatments and its mechanism. Corros. Sci. 2024, 229, 111883. [Google Scholar] [CrossRef]
- Li, Z.; Li, K.J.; Qian, C.K.; Wang, D.X.; Ji, W.; Wu, Y.; Cai, Z.P.; Liu, Q. Effect of pulsed magnetic field on retained austenite of quenched 8Cr4Mo4V steel under cryogenic condition. J. Mater. Res. Technol. 2023, 23, 5004–5015. [Google Scholar] [CrossRef]
- Ye, Y.X.; Tang, C.; Zhang, Y.; Yang, Y.; Li, K.J.; Wang, F.; Huang, B.H.; Xu, L.J.; Gao, L.; Wang, J.H.; et al. Magnetic-assisted ultrasonic nanocrystal surface modification induced microstructures of titanium alloy. Surf. Coat. Technol. 2024, 485, 130892. [Google Scholar] [CrossRef]
- Ao, D.; Zhang, H.; Wang, H.; Bao, W.; Gao, J.; Chu, X. Investigation of deformation behavior during electric pulse assisted incremental forming of Ti-6Al-4V sheet with a water-cooling system. J. Manuf. Process. 2024, 126, 165–174. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Chu, X.; Tang, J.; Zhao, G.; Zhang, C. Improvement in Mechanical Properties of Al-Zn-Mg Alloy by Applying Electric Pulse During Hot Extrusion. J. Mater. Res. Technol. 2020, 9, 1210–1220. [Google Scholar] [CrossRef]
- Sun, F.; Wan, S.; Liao, J.; Wang, D.; Xiao, G.; Niu, Q. Effect of Electric Pulse Treatment on the Microstructure and Machining Performance of Ti-6Al-4V. J. Mater. Eng. Perform. 2024, 33, 1169–1178. [Google Scholar]
- Kang, K.; Li, D.; Wang, A.; Shi, D.; Gao, G.; Xu, Z. Experimental Investigation on Aging Treatment of 7050 Alloy Assisted by Electric Pulse. Results Phys. 2020, 16, 103016. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, X. Refining the Microstructure to Strengthen Casting Titanium Alloy by Electric Pulse. Mater. Sci. Eng. A 2022, 849, 143519. [Google Scholar] [CrossRef]
- Oboňa, J.V.; Ocelík, V.; Rao, J.C.; Skolski, J.Z.P.; Römer, G.R.B.E.; Huis, A.J.; De Hosson, J.T.M. Modification of Cu surface with picosecond laser pulses. Appl. Surf. Sci. 2014, 303, 118–124. [Google Scholar] [CrossRef]
- Gu, S.; Liu, C.; Kimura, Y.; Yoon, S.; Cui, Y.; Yan, X.; Ju, Y.; Toku, Y. Realizing strength–ductility synergy in a lean duplex stainless steel through enhanced TRIP effect via pulsed electric current treatment. Mater. Sci. Eng. A 2023, 883, 145534. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Yao, Y.; Qiao, Q.; Zhao, L.; Liu, L.; Jin, F.; Zhan, M.; Li, H. Anomalous enhancing effects of electric pulse treatment on strength and ductility of TC17 linear friction welding joints. J. Mater. Sci. Technol. 2024, 203, 155–166. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Zhou, Y.; Zhang, Y.; Geng, G. Influence of electric pulse on microstructural characteristics and mechanical properties of cast AZ91D magnesium alloy. J. Alloys Compd. 2025, 1010, 177303. [Google Scholar] [CrossRef]
- Ren, L.; Liu, C.H.; Zhang, X.F. Rapid repair of thermal aging embrittlement in 17-4PH martensitic stainless steel using pulsed electric current. Mater. Charact. 2024, 208, 113650. [Google Scholar] [CrossRef]
- Xu, G.L.; Zhu, Y.Q.; Peng, L.J.; Mi, X.J.; Xie, H.F.; Cao, Y.C.; Li, X.H. Simultaneously enhancing the strength and ductility of Cu-Ti-Fe alloy through electric current pulse induced precipitation. Scr. Mater. 2025, 255, 116387. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, L.H.; Yu, S.; Wang, H.; Wang, H.J. Gradient phase transformation of Al-Zn-Mg-Cu alloy induced by nonlinear interface wetting under electromagnetic shocking treatment. J. Mater. Sci. 2023, 58, 16239–16255. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, F.L.; Sun, Q.; Qian, D.S.; Song, Y.L.; Hua, L. Study on the microstructure and impact toughness of TC11 titanium alloy by a novel electromagnetic shocking treatment. Mater. Sci. Eng. A 2023, 876, 145149. [Google Scholar] [CrossRef]
- Sun, Q.; Hua, L. Micro texture of titanium alloys excited nonlinearly by electromagnetic pulse. Scr. Mater. 2021, 200, 113828. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, Y.M.; Wang, F. A novel electromagnetic shock treatment to selectively modify grain boundary and improve the corrosion resistance of aluminium alloy. Mater. Lett. 2023, 334, 133703. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, H.J.; Yu, S.; Wang, F.; Song, Y.L.; Hua, L.; Qian, D.S. Reducing stress corrosion cracking susceptibility of high-strength aluminum alloy and its fastener by a novel electromagnetic shocking treatment. J. Alloys Compd. 2023, 960, 170917. [Google Scholar] [CrossRef]
- Cahn, R.W. Materials science: Melting and the surface. Nature 1986, 323, 668–669. [Google Scholar] [CrossRef]
- Tartaglino, U.; Zykova-Timan, T.; Ercolessi, F.; Tosatti, E. Melting and nonmelting of solid surfaces and nanosystems. Phys. Rep. 2005, 411, 291–321. [Google Scholar] [CrossRef]
- Ding, K.; Oue, D.; Chan, C.T.; Pendry, J.B. Casimir-Induced Instabilities at Metallic Surfaces and Interfaces. Phys. Rev. Lett. 2021, 126, 046802. [Google Scholar] [CrossRef]
- Jiang, W.B.; Kong, Q.P.; Cui, P. Further evidence of grain boundary internal friction in bicrystals. Mater. Sci. Eng. A 2010, 527, 6028–6032. [Google Scholar] [CrossRef]
- Hong, J.N.; Tian, Y.; Liang, T.C.; Liu, X.M.; Song, Y.Z.; Guan, D.; Yan, Z.X.; Guo, J.D.; Tang, B.Z.; Cao, D.Y.; et al. Imaging surface structure and premelting of ice Ih with atomic resolution. Nature 2024, 630, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Slater, B.; Michaelides, A. Surface premelting of water ice. Nat. Rev. Chem. 2019, 3, 172–188. [Google Scholar] [CrossRef]
- Kong, Q.P.; Fang, Q.F. Progress in the Investigations of Grain Boundary Relaxation. Crit. Rev. Solid State Mater. Sci. 2016, 41, 192–216. [Google Scholar] [CrossRef]
- Danzig, A.; Scaly, O.; Polturak, E. Is the surface fluid during premelting? A study of the surface shear resistance of solid Gallium. Surf. Sci. 2021, 705, 121779. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Q.; Hong, Y.R.; Zhang, H.; Wang, J.; Wang, J.W.; Zhang, Z. Revealing the pulse-induced electroplasticity by decoupling electron wind force. Nat. Commun. 2022, 13, 6503. [Google Scholar] [CrossRef]
- Bai, Z.T.; Misra, A.; Fan, Y. Universal Trend in the dynamic relaxations of tilted metastable grain boundaries during ultrafast thermal cycle. Mater. Res. Lett. 2022, 10, 343–351. [Google Scholar] [CrossRef]
- Dillon, S.J.; Tang, M.; Carter, W.C.; Harmer, M.P. Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 2007, 55, 6208–6218. [Google Scholar] [CrossRef]
- Cantwell, P.R.; Tang, M.; Dillon, S.J.; Luo, J.; Rohrer, G.S.; Harmer, M.P. Grain boundary complexions. Acta Mater. 2014, 62, 1–48. [Google Scholar] [CrossRef]
- Liss, K.D.; Xu, P.G.; Shiro, A.; Zhang, S.Y.; Yukutake, E.; Shobu, T.; Akita, K. Abnormal grain growth: A spontaneous activation of competing grain rotation. Adv. Eng. Mater. 2024, 26, 2300470. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Duan, Y.; Wang, F.; Jie, W.; Liang, S. Observation and Analysis of Metallic Interface Bridging and Self-Healing Under Electromagnetic Shocking Treatment. Metals 2025, 15, 422. https://doi.org/10.3390/met15040422
Sun Q, Duan Y, Wang F, Jie W, Liang S. Observation and Analysis of Metallic Interface Bridging and Self-Healing Under Electromagnetic Shocking Treatment. Metals. 2025; 15(4):422. https://doi.org/10.3390/met15040422
Chicago/Turabian StyleSun, Qian, Yaxuan Duan, Fanglei Wang, Weibing Jie, and Suohui Liang. 2025. "Observation and Analysis of Metallic Interface Bridging and Self-Healing Under Electromagnetic Shocking Treatment" Metals 15, no. 4: 422. https://doi.org/10.3390/met15040422
APA StyleSun, Q., Duan, Y., Wang, F., Jie, W., & Liang, S. (2025). Observation and Analysis of Metallic Interface Bridging and Self-Healing Under Electromagnetic Shocking Treatment. Metals, 15(4), 422. https://doi.org/10.3390/met15040422