Effect of High Temperature on the Mechanical Performance of Additively Manufactured CoCrNi Medium-Entropy Alloy Octet-Truss Lattice Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication
2.2. Experimental Tests
3. Numerical Modeling
4. Results and Discussion
4.1. Mechanical Response of Octet Metamaterials
4.2. Deformation Patterns
4.3. Parameters Affecting Deformation Modes
4.4. Ashby Plot for Energy Absorption
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gludovatz, B.; Hohenwarter, A.; Thurston, K.V.S.; Bei, H.; Wu, Z.; George, E.P.; Ritchie, R.O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Q.; Cheng, Z.; Zhu, M.; Zhou, H.; Jiang, P.; Zhou, L.; Xue, Q.; Yuan, F.; Zhu, J.; et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 2021, 592, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, Y.L.; Lin, S.J.; Chen, S.K. High-Entropy Alloys—A New Era of Exploitation. Mater. Sci. Forum 2007, 560, 1–9. [Google Scholar] [CrossRef]
- An, N.; Sun, Y.; Wu, Y.; Tian, J.; Li, Z.; Li, Q.; Chen, J.; Hui, X. High temperature strengthening via nanoscale precipitation in wrought CoCrNi-based medium-entropy alloys. Mater. Sci. Eng. A 2020, 798, 140213. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yang, T.; Tong, Y.; Wang, J.; Luan, J.H.; Jiao, Z.B.; Chen, D.; Yang, Y.; Hu, A.; Liu, C.T.; et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017, 138, 72–82. [Google Scholar] [CrossRef]
- Alshataif, Y.A.; Sivasankaran, S.; Al-Mufadi, F.A.; Alaboodi, A.S.; Ammar, H.R. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: A review. Met. Mater. Int. 2019, 26, 1099–1133. [Google Scholar] [CrossRef]
- Santos, E.C.; Shiomi, M.; Osakada, K.; Laoui, T. Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 2006, 46, 1459–1468. [Google Scholar] [CrossRef]
- Deng, H.W.; Wang, M.M.; Xie, Z.M.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Xiong, Y. Enhancement of strength and ductility in non-equiatomic CoCrNi medium-entropy alloy at room temperature via transformation-induced plasticity. Mater. Sci. Eng. A 2021, 804, 140516. [Google Scholar] [CrossRef]
- Weng, F.; Chew, Y.; Zhu, Z.; Yao, X.; Wang, L.; Ng, F.L.; Liu, S.; Bi, G. Excellent combination of strength and ductility of CoCrNi medium entropy alloy fabricated by laser aided additive manufacturing. Addit. Manuf. 2020, 34, 101202. [Google Scholar] [CrossRef]
- Bi, X.; Li, R.; Li, T.; Wang, C.; Yuan, Z.; Cheng, J. Improvement of mechanical properties at cryogenic temperature of CoCrNi medium entropy alloy fabricated by hybrid additive manufacturing technology. Mater. Charact. 2023, 205, 113351. [Google Scholar] [CrossRef]
- Yi, M.; Tu, J.; Yang, L.; Zhou, Z.; Chen, S.; Ding, L.; Du, Y.; Qiu, Y.; Liang, Y. Microstructural mechanisms endowing high strength-ductility synergy in CoCrNi medium entropy alloy prepared by laser powder bed fusion. Addit. Manuf. 2024, 87, 104229. [Google Scholar] [CrossRef]
- Li, T.; Li, Y. Mechanical behaviors of three-dimensional chiral mechanical metamaterials. Compos. Part B Eng. 2023, 270, 111141. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Surjadi, J.U.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N.X.; Lu, Y. Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 2019, 21, 1800864. [Google Scholar] [CrossRef]
- Feng, X.; Surjadi, J.U.; Fan, R.; Li, X.; Zhou, W.; Zhao, S.; Lu, Y. Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability. Mater. Today 2021, 42, 10–16. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Lu, Y.; Zhou, J.; Li, D.; Yue, D.; Zhang, X. Mechanical properties and energy absorption of medium-entropy alloy triply periodic minimal surface cellular structures fabricated via selective laser melting. Mech. Mater. 2024, 196, 105084. [Google Scholar] [CrossRef]
- Surjadi, J.U.; Feng, X.; Fan, R.; Lin, W.; Li, X.; Lu, Y. Hollow medium-entropy alloy nanolattices with ultrahigh energy absorption and resilience. NPG Asia Mater. 2021, 13, 36. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Li, B.-C.; Wang, Y.-J.; Zhang, W.; Yue, C.-C.; Zhang, Q.-C.; Jin, F. Elevated temperature compression behaviors of 3D printed hollow pyramidal lattice sandwich structure reinforced by truncated square honeycomb. Compos. Struct. 2022, 286, 115307. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Zhang, Q.-C.; Huang, L.; Zhang, D.-Z.; Jin, F. Effect of elevated temperature on the out-of-plane compressive properties of nickel based pyramidal lattice truss structures with hollow trusses. Thin-Walled Struct. 2021, 159, 107247. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Wang, J.; Wang, Y.-J.; Li, B.-C.; Li, J.; Li, G.; Sui, Y.-G.; Zhang, Q.-C.; Jin, F. Elevated temperature axial crushing performance of multi-walled tube-reinforced aluminum foam. Thin-Walled Struct. 2023, 185, 110582. [Google Scholar] [CrossRef]
- Xiao, L.J.; Song, W.; Wang, C.; Liu, H.; Tang, H.; Wang, J. Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure. Mater. Sci. Eng. A 2015, 640, 375–384. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Z.-J.; Wei, M.; Jin, F. Ultra-high strength of additively manufactured CoCrNi medium entropy alloy with high-fraction TiC. Mater. Lett. 2024, 371, 136945. [Google Scholar] [CrossRef]
- Ma, J.; Niu, J.; Lin, Y.; Zhang, X.; Jin, F. Laser powder bed fusion of CoCrNi composite with high fraction of TiC: The microstructure and mechanical properties at different temperatures. Mater. Sci. Eng. A 2024, 911, 146929. [Google Scholar] [CrossRef]
- Moravcik, I.; Cizek, J.; Kovacova, Z.; Nejezchlebova, J.; Kitzmantel, M.; Neubauer, E.; Kubena, I.; Hornik, V.; Dlouhy, I. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy. Mater. Sci. Eng. A 2017, 701, 370–380. [Google Scholar] [CrossRef]
- Tu, X.; Wang, J.; Guo, H.; Zhao, D.; Jiao, Z.; Ma, S.; Wang, R.; Wang, Q.; Wang, Z. Temperature effect on the microstructural refinement of equiatomic CoCrNi medium entropy alloy via cyclically multi-directional impact. J. Alloys Compd. 2024, 1003, 175722. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, X.; Zhang, Z.-J.; Zhang, Q.-C.; Wang, J.; Jin, F. Unusually increased plasticity of additively manufactured ultra-strong CoCrNi medium entropy alloy composite with increasing temperature. Mater. Sci. Eng. A 2025, 925, 147886. [Google Scholar] [CrossRef]
- Liu, D.; Yu, Q.; Kabra, S.; Jiang, M.; Forna-Kreutzer, P.; Zhang, R.; Payne, M.; Walsh, F.; Gludovatz, B.; Asta, M.; et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 2022, 378, 978–983. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Yao, X.; Luan, J.; Li, Q.; Liu, S.; Xiao, B.; Ju, J.; Zhao, S.; Zhao, Y.; et al. A strong-yet-ductile high-entropy alloy in a broad temperature range from cryogenic to elevated temperatures. Acta Mater. 2024, 268, 119770. [Google Scholar] [CrossRef]
- Fiedler, T.; Al-Sahlani, K.; Linul, P.A.; Linul, E. Mechanical properties of A356 and ZA27 metallic syntactic foams at cryogenic temperature. J. Alloys Compd. 2020, 813, 152181. [Google Scholar] [CrossRef]
- Khezrzadeh, O.; Mirzaee, O.; Emadoddin, E.; Linul, E. Anisotropic compressive behavior of metallic foams under extreme temperature conditions. Materials 2020, 13, 2329. [Google Scholar] [CrossRef] [PubMed]
- Kenel, C.; Casati, N.P.M.; Dunand, D.C. 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices. Nat. Commun. 2019, 10, 904. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, D.; Hsu, Y.-C.; Dunand, D.C. Microstructure and properties of high-entropy-superalloy microlattices fabricated by direct ink writing. Acta Mater. 2024, 275, 120055. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yang, B.; Wang, Y.; Ma, J.; Zhang, Q.; Jiao, J. Effect of High Temperature on the Mechanical Performance of Additively Manufactured CoCrNi Medium-Entropy Alloy Octet-Truss Lattice Materials. Metals 2025, 15, 341. https://doi.org/10.3390/met15040341
Zhang Z, Yang B, Wang Y, Ma J, Zhang Q, Jiao J. Effect of High Temperature on the Mechanical Performance of Additively Manufactured CoCrNi Medium-Entropy Alloy Octet-Truss Lattice Materials. Metals. 2025; 15(4):341. https://doi.org/10.3390/met15040341
Chicago/Turabian StyleZhang, Zhijia, Bowen Yang, Yongjing Wang, Jun Ma, Qiancheng Zhang, and Jiankai Jiao. 2025. "Effect of High Temperature on the Mechanical Performance of Additively Manufactured CoCrNi Medium-Entropy Alloy Octet-Truss Lattice Materials" Metals 15, no. 4: 341. https://doi.org/10.3390/met15040341
APA StyleZhang, Z., Yang, B., Wang, Y., Ma, J., Zhang, Q., & Jiao, J. (2025). Effect of High Temperature on the Mechanical Performance of Additively Manufactured CoCrNi Medium-Entropy Alloy Octet-Truss Lattice Materials. Metals, 15(4), 341. https://doi.org/10.3390/met15040341