Non-Uniform Thermal Transfer of Molten Steel and Its Effect on Inclusion Particles Removal Behavior in Continuous Casting Tundish
Abstract
:1. Introduction
2. Numerical Model
2.1. Model Parameters and Assumptions
- The molten steel in the tundish is regarded as an incompressible Newtonian fluid, ignoring the influence of slag and air on the flow field;
- Ignore the impact of liquid level rise and fall during the ladle change process;
- Neglect inclusions generated by slag rolling, the reoxidation of molten steel, erosion of refractory materials;
- The inclusions are all spherical and the interaction between inclusions is ignored;
- There is no inclusion removal to the walls.
2.2. Governing Equation
2.3. Boundary Conditions
3. Model Validation
4. Results and Discussion
4.1. Influence of Thermal Buoyancy on Flow Field
4.2. Influence of Thermal Buoyancy on Inclusion Removal
4.3. The Influence of Casting Speed on the Removal Rate of Inclusions
4.4. Factors Affecting the Movement of Inclusions
5. Conclusions
- (1)
- The molten steel entering the tundish is affected by thermal buoyancy due to the temperature gradient. When the inlet temperature is high, the molten steel floats up under the action of thermal buoyancy and can form a horizontal stream behind the weir. Conversely, when the inlet temperature is low, it becomes challenging for the molten steel to reach the steel–slag interface, resulting in an inability to maintain a horizontal stream behind the dam.
- (2)
- At elevated inlet temperatures, there is an increase in inclusion removal rates. However, as inlet temperature decreases—specifically, when lower than outlet temperature—the rate of inclusion removal diminishes.
- (3)
- The larger the diameter of inclusions and the smaller the ITRR, the higher the removal rate of inclusions. When the ITRR is 0.1 °C/min, the average removal rates of inclusions of 10, 50, and 100 μm are 20.9%, 28.7%, and 59.6%, respectively; when the ITRR is 0.5 °C/min, the removal rates are 17.9%, 24.8%, and 55.2%, respectively.
- (4)
- Increasing the casting speed will shorten the duration of the horizontal stream behind the weir, making it easier for inclusions to be carried into the mold by the molten steel in the lower part of the tundish. Therefore, the casting speed and insulation performance of the ladle and tundish should be taken into account when formulating production processes so as to improve the cleanliness of the molten steel in the tundish.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sahai, Y. Tundish technology for casting clean steel: A review. Met. Mater. Trans. B 2016, 47, 2095–2106. [Google Scholar] [CrossRef]
- Dipak, M. Review, analysis, and modeling of continuous casting tundish systems. Steel Res. Int. 2019, 90, 1800279. [Google Scholar]
- Wang, Z.; Yang, Z.; Wang, X.; Yue, Q.; Xia, Z.; Xiao, H. Residence time distribution (RTD) applications in continuous casting tundish: A review and new perspectives. Metals 2022, 12, 1366. [Google Scholar] [CrossRef]
- Ma, W.-J.; Bao, Y.-P.; Zhao, L.-H.; Wang, M. Control of the precipitation of TiN inclusions in gear steels. Int. J. Miner. Met. Mater. 2014, 21, 234–239. [Google Scholar] [CrossRef]
- Bai, X.-F.; Sun, Y.-H.; Chen, R.-M.; Zhang, Y.-M.; Cai, Y.-F. Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels. Int. J. Miner. Met. Mater. 2019, 26, 573–587. [Google Scholar] [CrossRef]
- Mishra, S.K.; Jha, P.K.; Sharma, S.C.; Ajmani, S.K. Numerical investigation of the effect of transitory strand opening on mixing in a multistrand tundish. Int. J. Miner. Met. Mater. 2011, 18, 535–542. [Google Scholar] [CrossRef]
- Sarkar, S.; Sambasivam, R.; Ajmani, S.K.; Denys, M.B. Numerical analysis of unsteady hydrodynamics and thermal transport in five-strand asymmetric tundish. Ironmak. Steelmak. 2012, 39, 540–549. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Chen, W.; Chen, H.; Zhang, L. Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change. Int. J. Miner. Met. Mater. 2024, 31, 1540–1553. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, R.; Fang, Q.; Ni, H.; Song, X. Numerical simulation of transient multiphase flow in a five-strand bloom tundish during ladle change. Metals 2018, 8, 146. [Google Scholar] [CrossRef]
- Quan, Q.; Zhang, Z.-X.; Qu, T.-P.; Li, X.-L.; Tian, J.; Wang, D.-Y. Physical and numerical investigation on fluid flow and inclusion removal behavior in a single-strand tundish. J. Iron Steel Res. Int. 2023, 30, 1182–1198. [Google Scholar] [CrossRef]
- Zhang, J.-S.; Qin, B.-M.; Liu, Y.-H.; Li, Q.-H.; Zuo, X.-T.; Wang, C.; Yang, S.-F.; Liu, Q. Multiphase flow inside a four-strand continuous casting tundish using three types of ladle shrouds. J. Iron Steel Res. Int. 2023, 30, 1171–1181. [Google Scholar] [CrossRef]
- Huitron, R.M.P.; Lopez, P.E.R.; Vuorinen, E.; Jalali, P.N.; Kärkkäinen, M. Identification of cracking issues and process improvements through plant monitoring and numerical modelling of secondary cooling during continuous casting of HSLA steels: Casting and solidification. ISIJ Int. 2021, 61, 834. [Google Scholar] [CrossRef]
- Sheng, D.-Y.; Jönsson, P.G. Effect of thermal buoyancy on fluid flow and residence-time distribution in a single-strand tundish. Materials 2021, 14, 1906. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Ni, P.; Ersson, M.; Jönsson, P.G.; Li, Y. Numerical simulations on dynamic behavior of multiphase flow and heat transfer in a round mold with a swirling flow tundish design. Met. Mater. Trans. B 2022, 53, 3197–3214. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, H.; Luo, R.; Liu, C.; Wang, Y.; Ni, H. Optimization of flow, heat transfer and inclusion removal behaviors in an odd multistrand bloom casting tundish. J. Mater. Res. Technol. 2020, 9, 347–363. [Google Scholar] [CrossRef]
- Yang, B.; Lei, H.; Bi, Q.; Jiang, J.; Zhang, H.; Zhao, Y.; Zhou, J. Fluid flow and heat transfer in a tundish with channel type induction heating. Steel Res. Int. 2018, 89, 1800173. [Google Scholar] [CrossRef]
- Dou, W.; Yang, Z.; Wang, Z.; Yue, Q. Molten steel flow, heat transfer and inclusion distribution in a single-strand continuous casting tundish with induction heating. Metals 2021, 11, 1536. [Google Scholar] [CrossRef]
- Zhu, M.; Peng, S.; Jiang, K.; Luo, J.; Zhong, Y.; Tang, P. Fluid flow and heat transfer behaviors under non-isothermal conditions in a four-strand tundish. Metals 2022, 12, 840. [Google Scholar] [CrossRef]
- Gonzalez, H.; Ramos-Banderas, J.A.; Torres-Alonso, E.; Solorio-Diaz, G.; Hernández-Bocanegra, C.A. Multiphase modeling of fluid dynamic in ladle steel operations under non-isothermal conditions. J. Iron Steel Res. Int. 2017, 24, 888–900. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Isac, M.; Guthrie, R.I.L. Applications of computational fluid dynamics (CFD) in iron-and steelmaking: Part 2. Ironmak. Steelmak. 2010, 37, 562. [Google Scholar] [CrossRef]
- Fang, Q.; Zhao, P.; Zhang, H.; Zhou, W.-H.; Yu, G.; Wang, J.-H.; Ni, H.-W. Formation of free-surface vortex and vortex suppression by rotating stopper-rod at end of tundish casting. J. Iron Steel Res. Int. 2024, 31, 1104–1116. [Google Scholar] [CrossRef]
- Ruan, Y.W.; Yao, Y.; Shen, S.Y.; Wang, B.; Zhang, J.Y.; Huang, J.K. Physical and mathematical simulation of surface-free vortex formation and vortex prevention design during the end of casting in tundish. Steel Res. Int. 2020, 91, 201900616. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Fang, Q.; Wu, G.; Zhao, P.; Ni, H. Effect of top-swirling turbulence inhibitor on multiphase flow in a single-strand tundish during transient casting. Steel Res. Int. 2022, 93, 202100536. [Google Scholar] [CrossRef]
- Yang, B.; Chen, S.; Lei, H.; Gou, D. Numerical Simulation of Multi-physics Characteristics in Tundish with Channel Induction Heating. Met. Mater. Trans. B 2024, 55, 3811. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.-J.; Li, R. Uniformity evaluation and optimization of fluid flow characteristics in a seven-strand tundish. Int. J. Miner. Met. Mater. 2016, 23, 137–145. [Google Scholar] [CrossRef]
- Dinda, S.K.; Li, D.; Guerra, F.; Cathcart, C.; Barati, M. Continuous casting tundish dead volume study by physical modeling and computational investigation. Steel Res. Int. 2024, 95, 2400125. [Google Scholar] [CrossRef]
- Kumar, A.; Mazumdar, D.; Koria, S.C. Modeling of fluid flow and residence time distribution in a four-strand tundish for enhancing inclusion removal. ISIJ Int. 2008, 48, 38–47. [Google Scholar] [CrossRef]
- Xu, R.; Ling, H.; Wang, H.; Chang, L.; Qiu, S. Investigation on the effects of ladle change operation and tundish cover powder on steel cleanliness in a continuous casting tundish. Steel Res. Int. 2021, 92, 202100072. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, Q.; Deng, S.Y.; Liu, C.; Ni, H.W. Multiphase flow in a five-strand tundish using trumpet ladle shroud during steady-state casting and ladle change-over. Steel Res. Int. 2019, 90, 201800497. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, C.; Huang, A.; Yan, W.; Gu, H.; He, Z.; Li, G. Numerical simulation on refractory wear and inclusion formation in continuous casting tundish. Met. Mater. Trans. B 2021, 52, 1344–1356. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Z.; Cheng, H.; Qi, F.; Wang, C.; Zhang, L.; Li, B. Large eddy simulation of molten steel flow and inclusion transport in a new butterfly-type induction heating tundish. Met. Mater. Trans. B 2024, 55, 3490. [Google Scholar] [CrossRef]
- Gao, F.; Fang, Q.; Zha, W.; Huang, L.; Li, X.; Zhang, H.; Ni, H. Optimization of multiphase flow and initial solidification behaviors in a stainless steel mold by sen design. Met. Mater. Trans. B 2024, 55, 2717–2731. [Google Scholar] [CrossRef]
- Cui, H.-N.; Li, T.; Zhu, Y.-L.; Tan, M. Numerical investigation on particles removal by bubble flotation in swirling flow. J. Iron Steel Res. Int. 2022, 29, 961–972. [Google Scholar] [CrossRef]
- Ding, G.; Feng, D.; Luo, X.; Hou, Q.; Lv, A.; Qi, X.; Qi, D. Numerical Simulation Study on the Influence of Tundish Filter on Molten Steel Flow and Inclusions Removal. Steel Res. Int. 2024, 95, 202300807. [Google Scholar] [CrossRef]
- Lei, H.; Yang, B.; Bi, Q.; Xiao, Y.; Chen, S.; Ding, C. Numerical Simulation of Collision-Coalescence and Removal of Inclusion in Tundish with Channel Type Induction Heating. ISIJ Int. 2019, 59, 1811–1819. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z.; Li, F.; Lyu, B.; Chen, W.; Zhang, L. Numerical simulation on multiphase flow and slag entrainment during casting start of a slab continuous casting tundish. Met. Mater. Trans. B 2023, 54, 2048–2065. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.; Zhou, F.; Lu, Y.; Zhang, X.; Gu, H. Numerical simulation of slag entrapment process during the end of casting in tundish. Ironmak. Steelmak. 2022, 49, 1039–1047. [Google Scholar] [CrossRef]
- Yue, Q.; Hu, Z.; Wu, Z.-Y.; Long, H.-M.; Meng, Q.-M. Visualization of collision and aggregation behavior of particles simulating movement of inclusions in molten steel. J. Iron Steel Res. Int. 2018, 25, 173–180. [Google Scholar] [CrossRef]
- Haque, S.M.I.; Latif, A.; Abdullah, A.I.; Ashraf, A.M.; Khalid, A. Modeling of interfacial tension and inclusion motion behavior in steelmaking continuous casting mold. Materials 2023, 16, 968. [Google Scholar] [CrossRef]
- Xu, L.; Pei, Q.-W.; Han, Z.-F.; Yang, S.; Wang, J.-Y.; Yao, Y.-T. modeling study on melt flow, heat transfer, and inclusion motion in the funnel-shaped molds for two thin-slab casters. Processes 2022, 10, 2738. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, A.; He, Z.; Yan, W.; Li, G.; Wang, Q. Numerical investigation on motion and removal of inclusions in continuous casting tundish with multiorifice filter. Steel Res. Int. 2022, 93, 202100818. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Qu, T.; Wang, D.; Li, X.; Hu, S.; Tian, J.; Zhou, X.; Yang, Z. Numerical Investigation on Transient Flow and Inclusion Removal Behavior in Tundish During Ladle Change Process. Steel Res. Int. 2024, 95, 2400471. [Google Scholar] [CrossRef]
Parameter | Unit | Expression T is Temperature (°C) |
---|---|---|
Density of molten steel | kg m−3 | −0.792 T + 8267 |
Viscosity of molten steel | Pa s | −1.148 × 10−5 T + 0.0243 |
Thermal conductivity of molten steel | W m−1 °C−1 | 0.0157 T + 7.798 |
Specific heat capacity of molten steel | J kg−1 °C−1 | 0.381 T + 228.53 |
Inclusion density | kg m−3 | 2700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Qu, T.; Wang, D.; Li, X.; Fan, L.; Zhou, X. Non-Uniform Thermal Transfer of Molten Steel and Its Effect on Inclusion Particles Removal Behavior in Continuous Casting Tundish. Metals 2025, 15, 170. https://doi.org/10.3390/met15020170
Zhang Z, Qu T, Wang D, Li X, Fan L, Zhou X. Non-Uniform Thermal Transfer of Molten Steel and Its Effect on Inclusion Particles Removal Behavior in Continuous Casting Tundish. Metals. 2025; 15(2):170. https://doi.org/10.3390/met15020170
Chicago/Turabian StyleZhang, Zhixiao, Tianpeng Qu, Deyong Wang, Xianglong Li, Lei Fan, and Xingzhi Zhou. 2025. "Non-Uniform Thermal Transfer of Molten Steel and Its Effect on Inclusion Particles Removal Behavior in Continuous Casting Tundish" Metals 15, no. 2: 170. https://doi.org/10.3390/met15020170
APA StyleZhang, Z., Qu, T., Wang, D., Li, X., Fan, L., & Zhou, X. (2025). Non-Uniform Thermal Transfer of Molten Steel and Its Effect on Inclusion Particles Removal Behavior in Continuous Casting Tundish. Metals, 15(2), 170. https://doi.org/10.3390/met15020170