Analysis of Nonuniform Deformation in Aluminum Wires Under Varying Torsional Loads Using EBSD Measurement and Multiscale Crystal Plasticity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.1.1. Material Definition and Experimental Design
2.1.2. Hardness Measurements
2.1.3. Metallography and EBSD Measurements
2.2. Computational Procedure
- (1)
- Global Model Construction:
- (2)
- Running the Global Model and Transferring Results:
- (3)
- Creating the First Submodel (Submodel 1):
- (4)
- Creating the Second Submodel (RVE):
3. Results and Discussion
3.1. Initial Microstructure and Mechanical Properties
3.2. Fitting CPFEM Codes and Numerical Analysis with the Experimental Results
3.3. Mechanical Properties of Deformed Specimens
3.3.1. Torsion Tests
3.3.2. Hardness Tests
3.4. Microstructural Properties of Deformed Specimens
3.4.1. Texture Development
3.4.2. Taylor Factor (TF) Distribution
3.4.3. Schmid Factor (SF) Distribution
4. Conclusions
- -
- Experimental investigations with EBSD tests showed that the specimens had a nonrandom texture (fiber [100]) before torsional loading, and the CPFEM investigations were processed accordingly.
- -
- In wires with an average grain size of 55 μm, the hardness on the external surface after the torsion process increased by 22.3%, and in wires with an average grain size of 150 μm, it increased by 19.7%.
- -
- The most active slip systems during the torsional loading process among the designed tests (T1–T8) were: and .
- -
- The results showed that in specimens with an average grain size of 55 μm, with an increase in the strain rate from 0.5 to 5 (rpm), the average TF and average SF increased by 10% and 2.5%, respectively, when the strain (revolutions) climbed from 0.5 to 2.5.
- -
- In specimens with an average grain size of 150 μm, with an increase in the strain rate from 0.5 to 5 (rpm), the average TF and average SF increased by 13% and 4%, respectively, when the strain (revolutions) climbed from 0.5 to 2.5.
- -
- For specimens undergoing 0.5 revolutions, increasing the average grain size from 55 to 150 μm at the strain rate of 0.5 rpm caused a 2.8% increase in the average TF, while at the strain rate of 5 rpm, a 4.1% increase in average TF was observed with increasing average grain size.
- -
- For specimens undergoing 2.5 revolutions, at the strain rate of 0.5 rpm, with increasing average grain size, a 2.3% increase in the average TF was observed, while at the strain rate of 5 rpm, only a 1.3% increase occurred.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volokitina, I.; Volokitin, A.; Panin, E.; Fedorova, T.; Lawrinuk, D.; Kolesnikov, A.; Yerzhanov, A.; Gelmanova, Z.; Liseitsev, Y. Improvement of strength and performance properties of copper wire during severe plastic deformation and drawing process. Case Stud. Constr. Mater. 2023, 19, e02609. [Google Scholar] [CrossRef]
- Yin, F.; Ma, S.; Hu, S.; Liu, Y.; Hua, L.; Cheng, G.J. Understanding the microstructure evolution and mechanical behavior of titanium alloy during electrically assisted plastic deformation process. Mater. Sci. Eng. A 2023, 869, 144815. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Li, Y.; Xiao, Z.; Fouse, J.; Yang, X. Effect of initial orientation on the microstructure and mechanical properties of textured AZ31 Mg alloy during torsion and annealing. Mater. Des. 2015, 86, 526–535. [Google Scholar] [CrossRef]
- Shao, C.W.; Zhang, P.; Zhu, Y.K.; Zhang, Z.J.; Tian, Y.Z.; Zhang, Z.F. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure. Acta Mater. 2018, 145, 413–428. [Google Scholar] [CrossRef]
- Pourbashiri, M.; Poletti, C.; Sedighi, M.; Sommitsch, C. Strengthening mechanisms of Al wires processed by equal channel angular torsion drawing. Mater. Sci. Technol. 2020, 36, 65–82. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.; Ma, X.; Zhong, D.; Zhao, X.; Xiao, L.; Fang, X. Improvement of strength and ductility in a gradient structured Ni fabricated by severe torsion deformation. Mater. Sci. Eng. A 2021, 826, 141980. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Cai, S. Effect of gradient microstructure on the strength and ductility of medium-entropy alloy processed by severe torsion deformation. Mater. Sci. Eng. A 2021, 801, 140429. [Google Scholar] [CrossRef]
- Li, X.; Lu, L.; Li, J.; Zhang, X.; Gao, H. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat. Rev. Mater. 2020, 5, 706–723. [Google Scholar] [CrossRef]
- Howeyze, M.; Eivani, A.R.; Arabi, H.; Jafarian, H.R. Effects of deformation routes on the evolution of microstructure, texture and tensile properties of AA5052 aluminum alloy. Mater. Sci. Eng. A 2018, 732, 120–128. [Google Scholar] [CrossRef]
- Ziemian, C.W.; McClintock, M.S.; Ziemian, R.D. Experimental investigation of torsional strengths of aluminum alloys: Circular and rectangular solid sections. Structures 2024, 59, 105776. [Google Scholar] [CrossRef]
- Wu, H.; Huang, T.; Song, K.; Li, S.; Zhou, Y.; Zhang, Y. Effect of drawing speed on the deformation characteristics, microstructure and properties of copper wire rod. Mater. Sci. Eng. A 2024, 892, 146025. [Google Scholar] [CrossRef]
- Khamsuk, S.; Park, N.; Gao, S.; Terada, D.; Adachi, H.; Tsuji, N. Mechanical properties of bulk ultrafine grained aluminum fabricated by torsion deformation at various temperatures and strain rates. Mater. Trans. 2014, 55, 106–113. [Google Scholar] [CrossRef]
- Omranpour, B.; Ivanisenko, Y.; Kulagin, R.; Kommel, L.; Sanchez, E.G.; Nugmanov, D.; Scherer, T.; Heczel, A.; Gubicza, J. Evolution of microstructure and hardness in aluminum processed by High Pressure Torsion Extrusion. Mater. Sci. Eng. A 2019, 762, 138074. [Google Scholar] [CrossRef]
- Qiu, R.; Shoja, S.; von Fieandt, L.; Engqvist, J.; Bäcke, O.; Andrén, H.-O.; Halvarsson, M. Schmid factor analysis for chip flow induced plastic deformation of textured cubic carbonitride coatings. Int. J. Refract. Met. Hard Mater. 2022, 108, 105932. [Google Scholar] [CrossRef]
- Rakshit, R.; Sarkar, A.; Panda, S.K.; Mandal, S. Influence of out-of-plane stretch forming induced different strain paths on micro-texture evolution, slip system activity and Taylor factor distribution in Al–Li alloy. Mater. Sci. Eng. A 2022, 830, 142267. [Google Scholar] [CrossRef]
- Azhari, F.; Wallbrink, C.; Sterjovski, Z.; Crawford, B.R.; Menzel, A.; Agius, D.; Wang, C.H.; Schaffer, G. Predicting the complete tensile properties of additively manufactured Ti-6Al-4V by integrating three-dimensional microstructure statistics with a crystal plasticity model. Int. J. Plast. 2022, 148, 103127. [Google Scholar] [CrossRef]
- Wang, S.; Shang, H.; Zhang, Z.; Lou, Y. Multi-scale numerical investigation of deep drawing of 6K21 aluminum alloy by crystal plasticity and a stress-invariant based anisotropic yield function under non-associated flow rule. J. Manuf. Process. 2023, 102, 736–755. [Google Scholar] [CrossRef]
- Parmar, A.; Shin, Y.C. Prediction of grain refinement using multiscale crystal plasticity-integrated dislocation density-based model in multiphase steel alloys. Comput. Mater. Sci. 2024, 242, 113026. [Google Scholar] [CrossRef]
- Agius, D.; Kareer, A.; Al Mamun, A.; Truman, C.; Collins, D.M.; Mostafavi, M.; Knowles, D. A crystal plasticity model that accounts for grain size effects and slip system interactions on the deformation of austenitic stainless steels. Int. J. Plast. 2022, 152, 103249. [Google Scholar] [CrossRef]
- Cappola, J.; Wang, J.; Li, L. A dislocation-density-based crystal plasticity model for FCC nanocrystalline metals incorporating thermally-activated depinning from grain boundaries. Int. J. Plast. 2024, 172, 103863. [Google Scholar] [CrossRef]
- Chandra, S.; Kumar, S.; Samal, M.K.; Chavan, V.M. Influence of textural variability on plastic response of porous crystal embedded in polycrystalline aggregate: A crystal plasticity study. Int. J. Plast. 2024, 182, 104117. [Google Scholar] [CrossRef]
- Chandra, S.; Kumar, S.; Samal, M.K.; Chavan, V.M. Predicting porosity distribution effects on the orientation induced plastic anisotropy of ductile solids: A crystal plasticity investigation. Int. J. Plast. 2023, 171, 103781. [Google Scholar] [CrossRef]
- Tang, X.F.; Peng, L.F.; Shi, S.Q.; Fu, M.W. Influence of crystal structure on size dependent deformation behavior and strain heterogeneity in micro-scale deformation. Int. J. Plast. 2019, 118, 147–172. [Google Scholar] [CrossRef]
- Rezaei, M.J.; Sedighi, M.; Pourbashiri, M. Developing a new method to represent the low and high angle grain boundaries by using multi-scale modeling of crystal plasticity. J. Alloys Compd. 2023, 939, 168844. [Google Scholar] [CrossRef]
- Zoller, K.; Gruber, P.; Ziemann, M.; Görtz, A.; Gumbsch, P.; Schulz, K. Classification of slip system interaction in microwires under torsion. Comput. Mater. Sci. 2023, 216, 111839. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, Y.; Tang, K. Machine learning-based fatigue life prediction of lamellar titanium alloys: A microstructural perspective. Eng. Fract. Mech. 2024, 303, 110106. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, W.; Ru, Y.; Pei, Y.; Li, S.; Gong, S.; Xu, H. Predicting the oxidation kinetic rate and near-surface microstructural evolution of alumina-forming Ni-based single crystal superalloy based on machine learning. Acta Mater. 2024, 266, 119703. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Tang, S.; Ma, Y.; Liu, W. Predicting the in-plane mechanical anisotropy of 7085 aluminum alloys through crystal plasticity simulations and machine learning. Mater. Today Commun. 2024, 38, 108381. [Google Scholar] [CrossRef]
- Mao, Y.; Keshavarz, S.; Kilic, M.N.T.; Wang, K.; Li, Y.; Reid, A.C.E.; Liao, W.; Choudhary, A.; Agrawal, A. A deep learning-based crystal plasticity finite element model. Scr. Mater. 2025, 254, 116315. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Wen, J.; Wei, Y. Determining plastic slips in rate-independent crystal plasticity models through machine learning algorithms. Extrem. Mech. Lett. 2024, 71, 102216. [Google Scholar] [CrossRef]
- Yu, P.; Huang, H.; He, S.; Ren, Z. A multiscale methods for prediction of the elastic properties of portland cement blended with fly ash based on X-CT and hydration model. J. Build. Eng. 2024, 89, 109179. [Google Scholar] [CrossRef]
- Long, X.; Chong, K.; Su, Y.; Du, L.; Zhang, G. Connecting the macroscopic and mesoscopic properties of sintered silver nanoparticles by crystal plasticity finite element method. Eng. Fract. Mech. 2023, 281, 109137. [Google Scholar] [CrossRef]
- Shao-lei, L.; Yan-liang, Y.; Qin, G.; Xiao, L.; Ming-hui, S.; Yi-long, L. A novel model to predict microvoid evolution in tensile necking using macroscopic deformation behavior. J. Mater. Res. Technol. 2023, 25, 2040–2048. [Google Scholar] [CrossRef]
- Liu, Z.L.; Liu, X.M.; Zhuang, Z.; You, X.C. A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales. Int. J. Plast. 2009, 25, 1436–1455. [Google Scholar] [CrossRef]
- Raschi, M.; Lloberas-Valls, O.; Huespe, A.; Oliver, J. High performance reduction technique for multiscale finite element modeling (HPR-FE2): Towards industrial multiscale FE software. Comput. Methods Appl. Mech. Eng. 2021, 375, 113580. [Google Scholar] [CrossRef]
- Lu, X.; Yvonnet, J.; Papadopoulos, L.; Kalogeris, I.; Papadopoulos, V. A stochastic FE2 data-driven method for nonlinear multiscale modeling. Materials 2021, 14, 2875. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, H.; Ye, J.; Yuan, M.; Tian, L.; Li, Z.; Liu, Y. 3D multiscale tri-level finite element analysis of aluminum matrix composites with Nano&Micro hybrid inclusions. Compos. Struct. 2023, 305, 116545. [Google Scholar] [CrossRef]
- Long, X.; Chong, K.; Su, Y.; Chang, C.; Zhao, L. Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method. Int. J. Fatigue 2023, 175, 107778. [Google Scholar] [CrossRef]
- Roters, F.; Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Reuber, C.; Wong, S.L.; Maiti, T.; Ebrahimi, A.; Hochrainer, T.; Fabritius, H.-O. DAMASK–The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comput. Mater. Sci. 2019, 158, 420–478. [Google Scholar] [CrossRef]
- Qin, R.; Zhang, Z.; Huang, J.; Wang, J.; Du, Z.; Wen, G.; He, W. Surface stress monitoring of laser shock peening using AE time-scale texture image and multi-scale blueprint separable convolutional networks with attention mechanism. Expert Syst. Appl. 2023, 224, 120018. [Google Scholar] [CrossRef]
- Li, Y.-H.; Shen, F.; Güler, M.A.; Ke, L.-L. Modeling multi-physics electrical contact on rough surfaces considering elastic-plastic deformation. Int. J. Mech. Sci. 2024, 269, 109066. [Google Scholar] [CrossRef]
- Lu, W.; Chen, Y.; Zhang, W.; Tan, F.; Li, J.; Liu, B.; Liaw, P.K.; Fang, Q. A hierarchical multiscale crystal plasticity model for refractory multi-principal element alloys. Int. J. Mech. Sci. 2024, 271, 109140. [Google Scholar] [CrossRef]
- Petkov, M.P.; Elmukashfi, E.; Tarleton, E.; Cocks, A.C.F. Evaluation of local stress state due to grain-boundary sliding during creep within a crystal plasticity finite element multi-scale framework. Int. J. Mech. Sci. 2021, 211, 106715. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, Y.; Chen, K.; Yu, Y.; He, G.; Wu, P. Multi-scale crystal plasticity finite element method (CPFEM) simulations for shear band development in aluminum alloys. J. Alloys Compd. 2017, 711, 495–505. [Google Scholar] [CrossRef]
- Han, F.; Roters, F.; Raabe, D. Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver. Int. J. Plast. 2020, 125, 97–117. [Google Scholar] [CrossRef]
- Kohar, C.P.; Bassani, J.L.; Brahme, A.; Muhammad, W.; Mishra, R.K.; Inal, K. A new multi-scale framework to incorporate microstructure evolution in phenomenological plasticity: Theory, explicit finite element formulation, implementation and validation. Int. J. Plast. 2019, 117, 122–156. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Wang, J.; Lu, G.; Wang, W.; Yao, Z.; Zhao, S.; Liu, Y.; Li, Q. High-resolution reconstruction-based investigation of multi-scale lamellar microstructures by coupled crystal plasticity and in-situ experiment. Scr. Mater. 2024, 241, 115896. [Google Scholar] [CrossRef]
- Li, Z.; Kang, Q.; Xu, X.; Wang, C.; Luo, S.; Wang, G. Multiscale crystal plasticity finite element simulations of the deformation inhomogeneity of TiBw/TA15 composites with network-structured during hot rolling. J. Mater. Res. Technol. 2023, 25, 183–199. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Torsion Testing of Wire. In The Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2002; Volume 60, pp. 19–20. [Google Scholar]
- ASTM E384-09; Standard Test Method for Microindentation Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 1999.
- Petrík, J.; Blaško, P.; Markulík, Š.; Šolc, M.; Palfy, P. The indentation size effect (ISE) of metals. Crystals 2022, 12, 795. [Google Scholar] [CrossRef]
- He, J.-C.; Zhu, S.-P.; Gao, J.-W.; Liu, R.; Li, W.; Liu, Q.; He, Y.; Wang, Q. Microstructural size effect on the notch fatigue behavior of a Ni-based superalloy using crystal plasticity modelling approach. Int. J. Plast. 2024, 172, 103857. [Google Scholar] [CrossRef]
- Liu, C.; Roters, F.; Raabe, D. Finite strain crystal plasticity-phase field modeling of twin, dislocation, and grain boundary interaction in hexagonal materials. Acta Mater. 2023, 242, 118444. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, C.; Zhao, C.; Dong, J.; Roters, F.; Guan, D. Three-dimensional study of grain scale tensile twinning activity in magnesium: A combination of microstructure characterization and mechanical modeling. Acta Mater. 2023, 255, 119043. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.D.; Bieler, T.R.; Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2010, 58, 1152–1211. [Google Scholar] [CrossRef]
- Lin, P.; Nie, J.; Liu, M. Multiscale crystal plasticity finite element model for investigating the irradiation hardening and defect evolution mechanism of A508-3 steel. Nucl. Mater. Energy 2022, 32, 101214. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Sun, P.; Li, H.; Liu, Z.; Yang, G.; Liu, Y. Multi-scale investigation on grain size effect of a powder metallurgy Ni-based superalloy based on simulation and experimental characterization. Intermetallics 2024, 173, 108429. [Google Scholar] [CrossRef]
- Zhang, K.; Holmedal, B.; Hopperstad, O.S.; Dumoulin, S.; Gawad, J.; Van Bael, A.; Van Bael, A.; Van Houtte, P. Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: Crystal plasticity models, advanced yield functions and parameter identification. Int. J. Plast. 2015, 66, 3–30. [Google Scholar] [CrossRef]
- Tong, X.; Li, Y.; Fu, M.W. Modelling of grain size effects in progressive microforming using CPFEM. Int. J. Mech. Sci. 2024, 267, 108971. [Google Scholar] [CrossRef]
- Depriester, D.; Goulmy, J.P.; Barrallier, L. Crystal Plasticity simulations of in situ tensile tests: A two-step inverse method for identification of CP parameters, and assessment of CPFEM capabilities. Int. J. Plast. 2023, 168, 103695. [Google Scholar] [CrossRef]
- Su, T.H.; Huang, S.J.; Jean, J.G.; Chen, C.S. Multiscale computational solid mechanics: Data and machine learning. J. Mech. 2022, 38, 568–585. [Google Scholar] [CrossRef]
- Tian, W.; Qi, L.; Chao, X.; Liang, J.; Fu, M. Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures. Compos. Part B Eng. 2019, 162, 1–10. [Google Scholar] [CrossRef]
- Wang, B.B.; Xie, G.M.; Wu, L.H.; Xue, P.; Ni, D.R.; Xiao, B.L.; Liu, Y.D.; Ma, Z.Y. Grain size effect on tensile deformation behaviors of pure aluminum. Mater. Sci. Eng. A 2021, 820, 141504. [Google Scholar] [CrossRef]
- Barlat, F.; Glazov, M.V.; Brem, J.C.; Lege, D.J. A simple model for dislocation behavior, strain and strain rate hardening evolution in deforming aluminum alloys. Int. J. Plast. 2002, 18, 919–939. [Google Scholar] [CrossRef]
- Cai, S.L.; Li, D.Q.; Liu, S.C.; Cheng, Y.F.; Li, J.H.; Koch, C.C. Multiple gradient structures driving higher tensile strength and good capacity to absorbed energy in aluminum wire processed by cryogenic pre-torsion. Scr. Mater. 2022, 210, 114436. [Google Scholar] [CrossRef]
- Fan, H.; Wang, Q.; El-Awady, J.A.; Raabe, D.; Zaiser, M. Strain rate dependency of dislocation plasticity. Nat. Commun. 2021, 12, 1845. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Mishra, S. Implications of the micromechanical Taylor Factor on work hardening parameters: New perspectives from FFT simulations in DAMASK. Comput. Mater. Sci. 2024, 237, 112892. [Google Scholar] [CrossRef]
- Sarkar, A.; Sanyal, S.; Bandyopadhyay, T.K.; Mandal, S. Implications of microstructure, Taylor factor distribution and texture on tensile properties in a Ti-added Fe-Mn-Al-Si-C steel. Mater. Sci. Eng. A 2019, 767, 138402. [Google Scholar] [CrossRef]
- Hansen, N.; Huang, X. Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 1998, 46, 1827–1836. [Google Scholar] [CrossRef]
- Uenishi, A.; Teodosiu, C.; Nesterova, E.V. Microstructural evolution at high strain rates in solution-hardened interstitial free steels. Mater. Sci. Eng. A 2005, 400–401, 499–503. [Google Scholar] [CrossRef]
- Zhang, K.; Holmedal, B.; Manik, T.; Saai, A. Assessment of advanced Taylor models, the Taylor factor and yield-surface exponent for FCC metals. Int. J. Plast. 2019, 114, 144–160. [Google Scholar] [CrossRef]
- Rafailov, G.; Caspi, E.N.; Hielscher, R.; Tiferet, E.; Schneck, R.; Vogel, S.C. Visualization of texture components using MTEX. J. Appl. Crystallogr. 2020, 53, 540–548. [Google Scholar] [CrossRef]
- Yu, W.; Xin, M.; Li, Y.; Jiang, T.; Wang, H.; Wang, Z.; Xu, G. Tribological and texture analysis in Twin-roll casting 2060 Al-Li alloy. Mater. Des. 2022, 223, 111253. [Google Scholar] [CrossRef]
- Xia, D.; Chen, X.; Huang, G.; Jiang, B.; Tang, A.; Yang, H.; Gavras, S.; Huang, Y.; Hort, N.; Pan, F. Calculation of Schmid factor in Mg alloys: Influence of stress state. Scr. Mater. 2019, 171, 31–35. [Google Scholar] [CrossRef]
Test No. | Average Grain Size [μm] | Strain Rate [rpm] | Revolution [Turn] |
---|---|---|---|
T1 | 55 | 0.5 | 0.5 |
T2 | 150 | 0.5 | 0.5 |
T3 | 55 | 5.0 | 0.5 |
T4 | 150 | 5.0 | 0.5 |
T5 | 55 | 0.5 | 2.5 |
T6 | 150 | 0.5 | 2.5 |
T7 | 55 | 5.0 | 2.5 |
T8 | 150 | 5.0 | 2.5 |
elastic/stiffness matrix | 104.5 | 53.5 | 26.8 | ||
hardening model | 90 | 14 | 109 | 0.02 | 2.25 |
Fiber | Fiber | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
), ] | ), ] | ), ] | ), ] | (100), ] | ), ] | ), ] | [110] | <111> | ||
Ideal | ● | ● | ● | ● | ● | ● | ● | ● | ● | |
T1 (G55-S0.5-R0.5) | Exp. | ○ | ● | ● | ● | ● | ● | ● | - | ● |
CPFE | - | - | - | - | - | - | - | - | - | |
T2 (G150-S0.5-R0.5) | Exp. | ● | ○ | ● | ● | ● | ● | ● | ● | ● |
CPFE | - | - | - | - | - | - | - | - | - | |
T3 (G55-S5-R0.5) | Exp. | ● | ○ | ● | ● | ● | ● | ● | ● | ● |
CPFE | ● | ○ | ● | ● | ● | ● | ● | ● | ○ | |
T4 (G150-S5-R0.5) | Exp. | ○ | ● | ● | ● | ● | ● | ○ | ● | ● |
CPFE | ○ | ○ | ● | ● | ● | ○ | ● | ● | ● | |
T5 (G55-S0.5-R2.5) | Exp. | ● | ● | ● | ● | ● | ● | ● | ● | ● |
CPFE | - | - | - | - | - | - | - | - | - | |
T6 (G150-S0.5-R2.5) | Exp. | ● | ○ | ● | ● | ● | ● | ● | ● | ● |
CPFE | - | - | - | - | - | - | - | - | - | |
T7 (G55-S5-R2.5) | Exp. | ● | ○ | ● | ● | ● | ● | ● | ● | ● |
CPFE | ● | ● | ● | ● | ● | ● | ● | ○ | ○ | |
T8 (G150-S5-R2.5) | Exp. | ● | ● | ● | ● | ● | ● | ● | ● | ○ |
CPFE | ● | ● | ● | ○ | ● | ● | ● | ● | ○ |
Slip System | T3 (G55-S5.0-R0.5) | T4 (G150-S5.0-R0.5) | T7 (G55-S5.0-R2.5) | T8 (G150-S5.0-R2.5) | |
---|---|---|---|---|---|
1 | (111) [01] | 0.4286 | 0.4286 | 0.4286 | 0.4286 |
2 | (111) [01] | 0.3571 | 0.3571 | 0.3571 | 0.3571 |
3 | (111) [10] | 0.4286 | 0.4286 | 0.4286 | 0.4286 |
4 | (1) [0] | 0 | 0 | 0 | 0 |
5 | (1) [101] | 0 | 0 | 0 | 0 |
6 | (1) [10] | 0 | 0 | 0 | 0 |
7 | (1) [01] | 0.2857 | 0.2857 | 0.2857 | 0.2857 |
8 | (1) [0] | 0.4820 | 0.4820 | 0.4820 | 0.4820 |
9 | (1) [110] | 0.3571 | 0.3571 | 0.3571 | 0.3571 |
10 | (1) [011] | 0.2143 | 0.2143 | 0.2143 | 0.2143 |
11 | (1) [10] | 0.2857 | 0.2857 | 0.2857 | 0.2857 |
12 | (1) [0] | 0.4286 | 0.4286 | 0.4286 | 0.4286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaei, M.J.; Warchomicka, F.; Poletti, M.C.; Pourbashiri, M.; Sedighi, M. Analysis of Nonuniform Deformation in Aluminum Wires Under Varying Torsional Loads Using EBSD Measurement and Multiscale Crystal Plasticity. Metals 2025, 15, 145. https://doi.org/10.3390/met15020145
Rezaei MJ, Warchomicka F, Poletti MC, Pourbashiri M, Sedighi M. Analysis of Nonuniform Deformation in Aluminum Wires Under Varying Torsional Loads Using EBSD Measurement and Multiscale Crystal Plasticity. Metals. 2025; 15(2):145. https://doi.org/10.3390/met15020145
Chicago/Turabian StyleRezaei, Mohammad Javad, Fernando Warchomicka, Maria Cecilia Poletti, Mojtaba Pourbashiri, and Mohammad Sedighi. 2025. "Analysis of Nonuniform Deformation in Aluminum Wires Under Varying Torsional Loads Using EBSD Measurement and Multiscale Crystal Plasticity" Metals 15, no. 2: 145. https://doi.org/10.3390/met15020145
APA StyleRezaei, M. J., Warchomicka, F., Poletti, M. C., Pourbashiri, M., & Sedighi, M. (2025). Analysis of Nonuniform Deformation in Aluminum Wires Under Varying Torsional Loads Using EBSD Measurement and Multiscale Crystal Plasticity. Metals, 15(2), 145. https://doi.org/10.3390/met15020145