Research into the Properties of Wear-Resistant Coatings Produced Using HVOF Technology on the Functional Surfaces of Injection Molds
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of Injection Molds After Wear
2.2. Coating Characterization
- Cr2O3-TiO2 (75-25), 25/10 µm
- Al2O3-TiO2 (97-3), 30/5 µm
- -
- Increased coating adhesion—Ni-Al forms a strong mechanical and partially metallurgical bond with both the substrate and the ceramic coating, significantly reducing the risk of flaking of the top layers.
- -
- Compensating for differences in thermal expansion—ceramic materials and metals have different coefficients of thermal expansion. The interlayer acts as a damping zone, reducing the formation of stresses and microcracks during thermal cycles.
- -
- Improvement in surface structure—the 45/22 µm fraction ensures suitable roughness and surface development for anchoring subsequent layers, improving their stability and uniformity.
- -
- Protection of the substrate against corrosion—the Ni-Al intermediate layer acts as a barrier against the penetration of corrosive media in case the ceramic layer contains micropores.
2.3. Methodology of Phase Analysis of Coatings
2.4. Tribological Test
3. Results
3.1. Analysis of Worn Molds
3.2. Quality of Evaluated Coatings
3.3. Results of Tribological Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonollo, F.; Gramegna, N.; Timelli, G. High-Pressure Die-Casting: Contradictions and Challenges. JOM 2015, 67, 901–908. [Google Scholar] [CrossRef]
- Lordan, E.; Zhang, Y.; Dou, K.; Jacot, A.; Tzileroglou, C.; Wang, S.; Wang, Y.; Patel, J.; Lazaro-Nebreda, J.; Zhou, X.; et al. High-Pressure Die Casting: A Review of Progress from the EPSRC Future LiME Hub. Metals 2022, 12, 1575. [Google Scholar] [CrossRef]
- Campbell, J. Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2015; ISBN 9780444635099. [Google Scholar]
- Polmear, I.; StJohn, D.; Nie, J.F.; Qian, M. Light Alloys: Metallurgy of the Light Metals, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2017; ISBN 9780080994307. [Google Scholar]
- Huang, M.; Zhou, Q.; Wang, J.; Li, S. Die Casting Die Design and Process Optimization of Aluminum Alloy Gearbox Shell. Materials 2021, 14, 3999. [Google Scholar] [CrossRef]
- Niu, Z.; Liu, G.; Li, T.; Ji, S. Effect of High Pressure Die Casting on the Castability, Defects and Mechanical Properties of Aluminium Alloys in Extra-Large Thin-Wall Castings. J. Mater. Process. Technol. 2022, 303, 117525. [Google Scholar] [CrossRef]
- Blondheim, D.; Monroe, A. Macro Porosity Formation: A Study in High Pressure Die Casting. Int. J. Met. 2021, 16, 330–341. [Google Scholar] [CrossRef]
- Soares, G.; Neto, R.; Madureira, R.; Soares, R.; Silva, J.; Silva, R.P.; Araújo, L. Characterization of Al Alloys Injected through Vacuum-Assisted HPDC and Influence of T6 Heat Treatment. Metals 2023, 13, 389. [Google Scholar] [CrossRef]
- Gulizia, S.; Jones, D.; Jahedi, M.Z.; Kearney, T.; Koltun, P. Thermal Fatigue Studies Using HF Induction Heating of Die Materials for Light Metals Casting. Mater. Sci. Forum 2009, 618, 357–360. [Google Scholar] [CrossRef]
- Thirugnanam, M. Modern High Pressure Die-Casting Processes for Aluminium Castings. Trans. Indian Foundry Congr. 2013, 61, 1–7. [Google Scholar]
- Vann, J. From Simulation to Process Automation—“Define It And Do It”. Die Cast. Eng. 2011, 55, 32–37. [Google Scholar]
- Karaoglanli, A.C.; Oge, M.; Doleker, K.M.; Hotamis, M. Comparison of Tribological Properties of HVOF Sprayed Coatings with Different Composition. Surf. Coatings Technol. 2017, 318, 299–308. [Google Scholar] [CrossRef]
- Berger, L.M. Application of Hardmetals as Thermal Spray Coatings. Int. J. Refract. Met. Hard Mater. 2015, 49, 350–364. [Google Scholar] [CrossRef]
- Albaladejo-Fuentes, V.; Martos, A.M.; Silvello, A.; Dosta, S.; Sanchez, J.; Cano, I.G. Coatings, Surface Modifications, Spray Techniques (Cold Spray, HVOF/HVAF). In Encyclopedia of Materials: Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128197264. [Google Scholar]
- Tan, J.C.; Looney, L.; Hashmi, M.S.J. Component Repair Using HVOF Thermal Spraying. J. Mater. Process. Technol. 1999, 92–93, 203–208. [Google Scholar] [CrossRef]
- Davis, J.R. Handbook of Thermal Spray Technology; ASM International: Almere, The Netherlands, 2004; ISBN 0871707950. [Google Scholar]
- Fauchais, P.L.; Heberlein, J.V.R.; Boulos, M.I. Thermal Spray Fundamentals; Springer: New York, NY, USA, 2014; ISBN 978-0-387-28319-7. [Google Scholar]
- Pawlowski, L. The Science and Engineering of Thermal Spray Coatings, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780471490494. [Google Scholar]
- Fauchais, P.; Vardelle, M.; Vardelle, A.; Goutier, S. What Do We Know, What Are the Current Limitations of Suspension Plasma Spraying? J. Therm. Spray Technol. 2015, 24, 1120–1129. [Google Scholar] [CrossRef]
- Lima, R.S.; Marple, B.R. Enhanced Ductility in Thermally Sprayed Titania Coating Synthesized Using a Nanostructured Feedstock. Mater. Sci. Eng. A 2005, 395, 269–280. [Google Scholar] [CrossRef]
- Lima, R.S.; Moreau, C.; Marple, B.R. HVOF-Sprayed Al2O3-TiO2 Coatings Using Hybrid (Nano+Submicron) Powders: An Enhanced Wear Performance. In Proceedings of the Thermal Spray International Thermal Spray Conference, Beijing, China, 14–16 May 2007. [Google Scholar]
- Ksiazek, M.; Boron, L.; Tchorz, A. Microstructure, Mechanical Properties and Wear Behavior of High-Velocity Oxygen-Fuel (HVOF) Sprayed (Cr3C2-NiCr+Al) Composite Coating on Ductile Cast Iron. Coatings 2019, 9, 840. [Google Scholar] [CrossRef]
- Michalak, M.; Latka, L.; Sokolowski, P.; Toma, F.L.; Myalska, H.; Denoirjean, A.; Ageorges, H. Microstructural, Mechanical and Tribological Properties of Finely Grained Al2O3 Coatings Obtained by SPS and S-HVOF Methods. Surf. Coatings Technol. 2020, 404, 126463. [Google Scholar] [CrossRef]
- Gardon, M.; Guilemany, J.M. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review. J. Therm. Spray Technol. 2014, 23, 577–595. [Google Scholar] [CrossRef]
- Babu, P.S.; Madhavi, Y.; Krishna, L.R.; Sivakumar, G.; Rao, D.S.; Padmanabham, G. Thermal Spray Coatings for Erosion–Corrosion Resistant Applications. Trans. Indian Inst. Met. 2020, 73, 2141–2159. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, S.; Ratha, D. Synergistic Effect of the Addition of TiO 2 Feedstock on Solid Particle Erosion of Ni/Al2O3 and Ni/Cr2O3 Coatings. Wear 2019, 426-427, 250–257. [Google Scholar] [CrossRef]
- Gui, M.; Eybel, R.; Radhakrishnan, S.; Monerie-Moulin, F.; Raininger, R.; Taylor, P. Residual Stress in HVOF Thermally Sprayed WC-10Co-4Cr Coating in Landing Gear Application. J. Therm. Spray Technol. 2019, 28, 1295–1307. [Google Scholar] [CrossRef]
- Ksiazek, M.; Boron, L.; Tchorz, A. Study on the Microstructure, Mechanical Properties, and Erosive Wear Behavior of HVOF Sprayed Al2O3-15 wt.%TiO2 Coating with NiAl Interlayer on Al-Si Cast Alloy. Materials 2020, 13, 4122. [Google Scholar] [CrossRef]
- Gildersleeve, E.J.; Viswanathan, V.; Lance, M.J.; Haynes, J.A.; Pint, B.A.; Sampath, S. Role of Bond Coat Processing Methods on the Durability of Plasma Sprayed Thermal Barrier Systems. Surf. Coat. Technol. 2019, 375, 782–792. [Google Scholar] [CrossRef]
- Niccolai, F.; Bardi, U.; Carrafiello, L.; Placidi, M.; Rizzi, G.; Scrivani, A. Innovative Methods for the Characterization of Thermal Barrier Coatings. In Proceedings of the Thermal Spray International Thermal Spray Conference, Essen, Germany, 4–6 March 2002. [Google Scholar]
- Kalliopi, K.; Aligizaki, D. Surface Engineering for Corrosion and Wear Resistance. Anti-Corrosion Methods Mater. 2004, 51, 62. [Google Scholar] [CrossRef]
- Khadem, M.; Penkov, O.V.; Yang, H.K.; Kim, D.E. Tribology of Multilayer Coatings for Wear Reduction: A Review. Friction 2017, 5, 248–262. [Google Scholar] [CrossRef]
- Gildersleeve, E.J.; Vaßen, R. Thermally Sprayed Functional Coatings and Multilayers: A Selection of Historical Applications and Potential Pathways for Future Innovation. J. Therm. Spray Technol. 2023, 32, 778–817. [Google Scholar] [CrossRef]
- Quenard, S.; Roumanie, M. A Simple Method for a Protective Coating on Stainless Steel against Molten Aluminum Alloy Comprising Polymer-Derived Ceramics, Oxides and Refractory Ceramics. Materials 2021, 14, 1519. [Google Scholar] [CrossRef] [PubMed]
- López, A.J.; Rams, J. Protection of Carbon Steel Against Molten Aluminum Attack and High Temperature Corrosion Using High Velocity Oxygen-Fuel WC-Co Coatings. Surf. Coatings Technol. 2015, 262, 123–133. [Google Scholar] [CrossRef]
- Özbek, Y.Y.; Uçar, V.; Demirkiran, A.S. Tribological Properties of MgZrO3 Coatings Deposited by Plasma Spraying. Kov. Mater. 2008, 46, 27–32. [Google Scholar]
- Kaur, M.; Singh, H.; Prakash, S. Some Observations Regarding Erosion-Corrosion Performance of HVOF-Sprayed Cr3C2- NiCr and Cr3C2- NiCr-(25) WC-Co Coatings in Actual Boiler Environment. Adv. Mater. Res. 2007, 26-28, 1345–1348. [Google Scholar] [CrossRef]
- Nyamuchiwa, K.; Palad, R.; Panlican, J.; Tian, Y.; Aranas, C. Recent Progress in Hybrid Additive Manufacturing of Metallic Materials. Appl. Sci. 2023, 13, 8383. [Google Scholar] [CrossRef]
- Mehta, A.; Vasudev, H.; Singh, S.; Prakash, C.; Saxena, K.K.; Linul, E.; Buddhi, D.; Xu, J. Processing and Advancements in the Development of Thermal Barrier Coatings: A Review. Coatings 2022, 12, 1318. [Google Scholar] [CrossRef]
- Du, J.; Li, Y.; Li, F.; Lu, H.; Ran, X.; Zhang, X.; Qi, X. Numerical and Experimental Analysis of Temperature Field and Mechanical Analysis for the Multi-Layer Cr3C2-NiCr Coating Deposited by HVOF. J. Alloys Compd. 2022, 889, 161656. [Google Scholar] [CrossRef]
- Li, C.J.; Ohmori, A. Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits. J. Therm. Spray Technol. 2002, 11, 365–374. [Google Scholar] [CrossRef]
- Meghwal, A.; Anupam, A.; Murty, B.S.; Berndt, C.C.; Kottada, R.S.; Ang, A.S.M. Thermal Spray High-Entropy Alloy Coatings: A Review. J. Therm. Spray Technol. 2020, 29, 857–893. [Google Scholar] [CrossRef]
- Clyne, T.W.; Gill, S.C. Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work. J. Therm. Spray Technol. 1996, 5, 401–418. [Google Scholar] [CrossRef]
- Šarga, P.; Brezinová, J.; Viňáš, J.; Pástor, M.; Brezina, J. Impact of Cladding Technology on Residual Stresses Within the Renovation of High Pressure Die Casting Molds. Metals 2022, 12, 388. [Google Scholar] [CrossRef]
- Dadic, Z.; Živkovic, D.; Catipovic, N.; Bilic, J. High Pressure Die Casting Mould Repair Technologies. In Proceedings of the Mechanical Technology and Structural Materials, Split, Croatia, 21–23 September 2017. [Google Scholar]
- EN ISO 6507-1:2018; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. CEN-CENELEC Management Centre: Brussels, Belgium, 2018.
- ISO 20808:2004; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Friction and Wear Characteristics of Monolithic Ceramics by Ball-on-Disc Method. ISO (the International Organization for Standardization): Geneva, Switzerland, 2004.
- Bastakys, L.; Marcinauskas, L.; Milieška, M.; Grigaliūnas, M.; Matkovič, S.; Aikas, M. Tribological Properties of Chromia and Chromia Composite Coatings Deposited by Plasma Spraying. Coatings 2022, 12, 1035. [Google Scholar] [CrossRef]
- Gibbons, G.J.; Hansell, R.G. Thermal-Sprayed Coatings on Aluminium for Mould Tool Protection and Upgrade. J. Mater. Process. Technol. 2008, 204, 184–191. [Google Scholar] [CrossRef]
















| C | Mn | Si | P | S | Cr | Ni | Mo | V | Cu | Fe |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.362 | 0.421 | 0.166 | 0.002 | 0.009 | 5.09 | 0.074 | 2.31 | 0.64 | 0.072 | Bal. |
| Gun Movement Speed, [mm/s] | Oxygen [L/min] | Kerosene [L/h] | Powder Feed Rate [g/min] | Powder Feed Gas [L/min] | Spray Distance [mm] |
|---|---|---|---|---|---|
| 800 | 800 | 22.7 | 75 | oxygen; 800 | 380 |
| Parameters | Static Partner | Environment |
|---|---|---|
| Radius: 5.00 [mm] | Substrate: SiC | Temperature: 20.00 [°C] and 250 [° C] |
| Lin. Speed: 0.10 [m/s] | Cleaning: Aceton | Atmosphere: air |
| Normal load: 10.00 [N] | Dimension: 6.00 [mm] | Humidity: 40.00 [%] |
| Stop condition: 500.00 [m] | Geometry: Ball | |
| Effective Stop: Meters | ||
| Acquisition rate: 0.1 [Hz] |
| Experimental Materials | Applied Load [N] | Distance [m] | COF (SiC Ball) [-] | Wear Rate × 10−6 [mm3/m·N] |
|---|---|---|---|---|
| Al2O3-TiO2 20 °C | 10 | 500 | 0.279 ± 0.028 | 7.2 |
| Al2O3-TiO2 250 °C | 10 | 500 | 0.831 ± 0.056 | 143.2 |
| Cr2O3-TiO2 20 °C | 10 | 500 | 0.539 ± 0.027 | 6.9 |
| Cr2O3-TiO2 250 °C | 10 | 500 | 0.755 ± 0.029 | 35.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezinová, J.; Fiľo, M.; Puchý, V.; Viňáš, J.; Brezina, J.; Nováková-Marcinčínová, E. Research into the Properties of Wear-Resistant Coatings Produced Using HVOF Technology on the Functional Surfaces of Injection Molds. Metals 2025, 15, 1341. https://doi.org/10.3390/met15121341
Brezinová J, Fiľo M, Puchý V, Viňáš J, Brezina J, Nováková-Marcinčínová E. Research into the Properties of Wear-Resistant Coatings Produced Using HVOF Technology on the Functional Surfaces of Injection Molds. Metals. 2025; 15(12):1341. https://doi.org/10.3390/met15121341
Chicago/Turabian StyleBrezinová, Janette, Milan Fiľo, Viktor Puchý, Ján Viňáš, Jakub Brezina, and Ema Nováková-Marcinčínová. 2025. "Research into the Properties of Wear-Resistant Coatings Produced Using HVOF Technology on the Functional Surfaces of Injection Molds" Metals 15, no. 12: 1341. https://doi.org/10.3390/met15121341
APA StyleBrezinová, J., Fiľo, M., Puchý, V., Viňáš, J., Brezina, J., & Nováková-Marcinčínová, E. (2025). Research into the Properties of Wear-Resistant Coatings Produced Using HVOF Technology on the Functional Surfaces of Injection Molds. Metals, 15(12), 1341. https://doi.org/10.3390/met15121341

