Ultrasonic-Assisted Dissimilar Friction Stir Lap Welding of AA2024 and AZ31: A Comparative Study of Cold and Hot Welding Parameters
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- Under cold welding parameters, Al and Mg were bonded through the formation of an IMC layer and a hook structure. In the conventional FSLW joint, the Al/Mg bonding interface measured 3.1 mm in length, and the IMC layer was relatively thin and discontinuous. In contrast, the application of ultrasonic assistance enhanced material flow, increased the length of the Al/Mg bonding interface to 3.3 mm, and resulted in a continuous IMC layer. Moreover, compared with the conventional FSLW joint, the grains in the nugget zone were refined under ultrasonic assistance, which could be attributed to the increased strain rate. The average grain size in the nugget zone decreased from 2.0 μm in the FSLW-C joint to 1.6 μm in the UaFSLW-C joint.
- (2)
- Under hot welding parameters, the IMC layer exhibited an increase in thickness, and the hook structure was eliminated due to excessive heat input and material softening during FSLW. Concurrently, grain growth occurred in the nugget zone. The average grain size and thickness of the IMC layer for the FSLW-H and UaFSLW-H joints were 2.6 μm and 2 μm, respectively. The beneficial effect of ultrasonic assistance on the microstructures (i.e., the grain size and IMC layer thickness) was limited: the enhancement was confined primarily to an elongation of the Al/Mg bonding interface, which increased from 2.8 mm in the FSLW-H joint to 3.5 mm in the UaFSLW-H joint.
- (3)
- The hardness in the nugget zone of all dissimilar Al/Mg joints was lower than that of the Al base metal owing to the loss of dislocation and precipitation strengthening. Among all joints, the UaFSLW joint produced with cold welding parameters showed the highest hardness in the nugget zone (123 HV), attributable to grain refinement. Consistent with the hardness results, the tensile shear load also increased when cold welding parameters were applied: the conventional FSLW joint under hot welding parameters had a maximum tensile shear load of 1.41 kN, whereas the UaFSLW joint produced with cold welding parameters reached a higher load of 1.98 kN.
- (4)
- The initial crack was located outside the hook structure. It propagated across the hook and subsequently extended through the Al/Mg bonding interface. Under cold welding parameters, the conventional FSLW joint possessed a hook structure that impeded crack propagation, but its thin and discontinuous IMC layer limited the bonding strength. Ultrasonic assistance improved this by elongating the Al/Mg bonding interface and forming a continuous IMC layer, enhancing the tensile shear properties of the UaFSLW-C joint. Under hot welding parameters, the hook structure was eliminated, weakening the mechanical interlocking between Al and Mg, while the thickened IMC layer further softened the FSLW joint. Although ultrasonic assistance elongated the Al/Mg bonding interface and partially recovered the load/elongation, the overall properties remained inferior.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muhammad, N.A.; Geng, P.H.; Wu, C.S.; Ma, N.S. Unravelling the ultrasonic effect on residual stress and microstructure in dissimilar ultrasonic-assisted friction stir welding of Al/Mg alloys. Int. J. Mach. Tools Manuf. 2023, 186, 104004. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Liu, L. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Z-29.5Al-0.5Ti filler metal. Mater. Charact. 2014, 90, 1–6. [Google Scholar] [CrossRef]
- Varmazyar, J.; Khodaer, M. Diffusion bonding of aluminum-magnesium using cold rolled copper interlayer. J. Alloys Compd. 2019, 773, 838–843. [Google Scholar] [CrossRef]
- Bannour, S.; Abderrazak, K.; Mattei, S.; Masse, J.E.; Autric, M.; Mhiri, H. The influence of position in overlap joints of Mg and Al alloys on microstructure and hardness of laser welds. J. Laser Appl. 2013, 25, 032001–032008. [Google Scholar] [CrossRef]
- Verma, J.; Taiwade, R.V.; Sapate, S.G.; Patil, A.P.; Dhoble, A.S. Evaluation of microstructure, mechanical properties and corrosion resistance of friction stir-welded aluminum and magnesium dissimilar alloys. J. Mater. Eng. Perform. 2017, 26, 4738–4747. [Google Scholar] [CrossRef]
- Boccarusso, L.; Astarita, A.; Carlone, O.; Scherillo, F.; Rubino, F.; Squillace, A. Dissimilar friction stir lap welding of AA6082-Mg AZ31: Force analysis and microstructure evolution. J. Manuf. Process. 2019, 44, 376–388. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, L.; Zhao, Z.; Yan, K. Effect of travel speed on the microstructure of Al-to-Mg FSW joints. Mater. Sci. Technol. 2016, 32, 1025–1034. [Google Scholar] [CrossRef]
- Simonconi, M.; Forcellese, A. Effect of the welding parameters and tool configuration on micro- and macro-mechanical properties of similar and dissimilar FSWed joints in AA5754 and AZ31 thin sheets. Mater. Des. 2012, 41, 50–60. [Google Scholar] [CrossRef]
- Niu, S.Y.; Ji, S.D.; Yan, D.J.; Meng, X.C.; Xiong, X.H. AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer. J. Mater. Process. Technol. 2019, 263, 82–90. [Google Scholar] [CrossRef]
- Chen, Y.C.; Nakata, K. Friction stir lap joining aluminum and magnesium alloys. Scr. Mater. 2008, 58, 433–436. [Google Scholar] [CrossRef]
- Tan, S.; Zheng, F.Y.; Chen, J.; Han, J.Y.; Wu, Y.J.; Peng, L.M. Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061aluminum alloy to NZ30K magnesium alloy. J. Magnes. Alloy. 2017, 5, 56–63. [Google Scholar] [CrossRef]
- Mao, Y.Q.; Yang, P.; Zhang, W.Y.; Li, N.; Nie, H.; Lin, D.Y.; Ke, L.M. Improving tensile-shear properties of friction stir lap welded dissimilar Al/Mg joints by eliminating hook defect and controlling interfacial reaction. Chin. J. Aeronaut. 2023, 36, 257–267. [Google Scholar] [CrossRef]
- Venkateswaran, P.; Reynolds, A.P. Factors affecting the properties of friction stir welds between aluminum and magnesium alloys. Mater. Sci. Eng. A 2012, 545, 26–37. [Google Scholar] [CrossRef]
- Kumar, S.; Wu, C.S.; Shi, L. Intermetallic diminution during friction stir welding of dissimilar Al/Mg alloys in lap configuration via ultrasonic assistance. Metall. Mater. Trans. A 2020, 51, 5725–5742. [Google Scholar] [CrossRef]
- Peng, P.; Wang, K.S.; Wang, W.; Yang, T.; Liu, Q.; Zhang, T.; Zhang, S.Y.; Cai, J.; Qiao, K.; Wang, L.Q.; et al. Intermetallic compounds: Formation mechanism and effects on the mechanical properties and of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. Mater. Sci. Eng. A 2021, 802, 140554. [Google Scholar] [CrossRef]
- Mohammadi, J.; Behnamian, Y.; Mostafaer, A.; Gerlich, A.P. Tool geometry, rotation and travel speeds effects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater. Des. 2015, 75, 95–112. [Google Scholar] [CrossRef]
- Ji, S.D.; Niu, S.Y.; Liu, J.G. Dissimilar Al/Mg alloys friction stir lap welding with Zn foil assisted by ultrasonic. J. Mater. Sci. Technol. 2019, 35, 1712–1718. [Google Scholar] [CrossRef]
- Zhai, M.; Yin, J.L.; Yang, C.L.; Wu, C.S.; Song, H.T.; Zhao, W.Z.; Shi, L.; Qiao, J.N. Investigating the relationship of process parameter, heat-mass transfer and joint strength in Mg/Al friction stir lap welding via experiments, machine learning and numerical analysis. Int. J. Heat Mass Transf. 2025, 247, 127143. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Yu, M.R.; Jiang, Z.H.; Zhou, L.; Song, X.G. Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding. J. Alloys Compd. 2019, 789, 139–149. [Google Scholar] [CrossRef]
- Li, Q.H.; Ma, Z.W.; Ji, S.D.; Song, Q.; Gong, P.; Li, R. Effective joining of Mg/Ti dissimilar alloys by friction stir lap welding. J. Mater. Process. Technol. 2020, 278, 116483. [Google Scholar] [CrossRef]
- Zhai, M.; Wu, C.S.; Shi, L.; Chen, G.Q.; Shi, Q.Y. Dislocation strain energy based modeling for ultrasonic effect on friction stir lap welding process of dissimilar Mg/Al alloys. J. Mater. Res. Technol. 2023, 22, 252–268. [Google Scholar] [CrossRef]
- Kumar, S.; Wu, C.S. Suppression of intermetallic reaction layer by ultrasonic assistance during friction stir welding of Al and Mg based alloys. J. Alloys Compd. 2020, 827, 154343. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, F.H. Characteristics of dissimilar Ti/Al butt-lap joint fabricated via ultrasonic-assisted friction stir welding. Trans. Indian Inst. Met. 2024, 77, 3455–3464. [Google Scholar] [CrossRef]
- Farajollahi, R.; Aval, H.J.; Jamaati, R. Effects of Ni on the microstructure, mechanical and tribological properties of AA2024-Al3NiCu composite fabricated by stir casting process. J. Alloys Compd. 2021, 887, 161433. [Google Scholar] [CrossRef]
- Manjhi, S.L.; Sekar, P.; Bontha, S.; Balan, A.S.S. Effect of equiaxed grains and secondary phase particles on mechanical properties and corrosion behaviour of CMT-based wire arc additive manufactured AZ31 Mg alloy. CIRP J. Manuf. Sci. Technol. 2024, 46, 48–64. [Google Scholar] [CrossRef]
- Wang, F.F.; Li, W.Y.; Shen, J.; Wen, Q.; dos Santos, J.F. Improving weld formability by a novel dual-rotation bobbin tool friction stir welding. J. Mater. Sci. Technol. 2018, 34, 135–139. [Google Scholar] [CrossRef]
- Liu, H.J.; Hu, Y.Y.; Du, S.S.; Zhao, H.H. Microstructure characterization and mechanism of acoustoplastic effect in friction stir welding assisted by ultrasonic vibrations on the bottom surface of work pieces. J. Manuf. Process. 2019, 42, 159–166. [Google Scholar] [CrossRef]
- Shi, L.; Wu, C.S.; Padhy, G.K. Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding. Mater. Des. 2016, 104, 102–115. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Wang, X.Y.; Ding, H.; Zhao, J.W.; Zhang, F.H.; Ren, Z.H. Influence of tool pin eccentricity on microstructural evolution and mechanical properties of friction stir processed Al-5052 alloy. Mater. Sci. Eng. A 2019, 739, 272–276. [Google Scholar] [CrossRef]
- Yang, C.L.; Wu, C.S.; Shi, L. Effect of ultrasonic vibration on dynamic recrystallization in friction stir welding. J. Manuf. Process. 2020, 56, 87–95. [Google Scholar] [CrossRef]
- Zhao, J.J.; Wu, C.S.; Su, H. Ultrasonic effect on thickness variations of intermetallic compound layers in friction stir welding of aluminum/magnesium alloys. J. Manuf. Process. 2021, 62, 388–402. [Google Scholar] [CrossRef]
- Suhuddin, U.; Fischer, V.; Kroeff, F.; dos Santos, J.F. Microstructure and mechanical properties of friction spot welds of dissimilar AA5754 Al and AZ31 Mg alloys. Mater. Sci. Eng. A 2014, 590, 384–389. [Google Scholar] [CrossRef]
- Nan, X.C.; Zhou, L.; Sun, T.X.; Yu, M.R.; Song, X.G. Strengthening mechanism of Al/Ti friction stir butt welded joints via ultrasonic-induced fast diffusion effects. J. Mater. Process. Technol. 2025, 338, 118754. [Google Scholar] [CrossRef]
- Wang, Y.; Prangnell, P.B. The significance of intermetallic compounds formed during interdiffusion in aluminum and magnesium dissimilar welds. Mater. Charact. 2017, 134, 84–95. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Kar, A.; Yadav, D.; Suwas, S.; Kailas, S.V. Role of plastic deformation mechanisms during the microstructural evolution and intermetallics formation in dissimilar friction stir weld. Mater. Charact. 2020, 164, 110371. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, H.; Li, J.Z.; Cai, Z.H.; Zhao, J.W.; Yang, W.J. Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy. Mater. Sci. Eng. A 2016, 650, 281–289. [Google Scholar] [CrossRef]
- Meng, X.C.; Xie, Y.M.; Ma, X.T.; Liang, M.Y.; Peng, X.Y.; Han, S.W.; Kan, L.; Wang, X.; Chen, S.H.; Huang, Y.X. Towards friction stir remanufacturing of high-strength aluminum components. Acta Metall. Sin. (Engl. Lett.) 2023, 36, 91–102. [Google Scholar] [CrossRef]
- Azimzadegan, T.; Serajzadeh, S. An investigation into microstructures and mechanical properties of AA7075-T6 during Friction stir welding at relatively high rotational speeds. J. Mater. Eng. Perform. 2010, 19, 1256–1263. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, H.; Cai, Z.H.; Zhao, J.W.; Li, J.Z. Effect of initial base metal temper on microstructure and mechanical properties of friction stir processed Al-7B04 alloy. Mater. Sci. Eng. A 2016, 650, 396–403. [Google Scholar] [CrossRef]
- Mendez, P.F.; Tello, K.E.; Lienert, T.J. Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding. Acta. Mater. 2010, 58, 6012–6026. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Liu, H.J.; Fujii, H.; Ushioda, K. Effect of ultrasound on microstructure evolution of friction stir welded aluminum alloys. J. Manuf. Process. 2020, 56, 362–371. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, H.; Li, J.Z.; Zhao, J.W.; Fu, M.J.; Li, X.H. Effect of welding heat input and post-welded heat treatment on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 2524–2532. [Google Scholar] [CrossRef]
- Feng, X.L.; Liu, H.J.; Babu, S.S. Effect of grain size refinement and precipitation reactions on strengthening in friction stir processed Al-Cu alloys. Scripta Mater. 2011, 65, 1057–1060. [Google Scholar] [CrossRef]
- Zhao, J.J.; Wu, C.S.; Shi, L.; Su, H. Evolution of microstructures and intermetallic compounds at bonding interface in friction stir welding of dissimilar Al/Mg alloys with/without ultrasonic assistance. J. Mater. Sci. Technol. 2023, 139, 31–46. [Google Scholar] [CrossRef]














| AA2024 | Cu | Mg | Mn | Fe | Si | (Cr, Zn) | Al |
| 3.2 | 1.2 | 0.4 | 0.2 | 0.1 | <0.1 | Bal | |
| AZ31 | Al | Zn | Mn | Si | Cu | (Fe, Ni) | Mg |
| 3.0 | 0.8 | 0.6 | 0.08 | 0.01 | <0.01 | Bal |
| Sample | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Average |
|---|---|---|---|---|---|---|
| FSLW-C | 0.8 μm | 1.2 μm | 0.4 μm | 0.5 μm | 1.0 μm | 0.8 μm |
| UaFSLW-C | 1.7 μm | 1.2 μm | 1.9 μm | 1.5 μm | 1.5 μm | 1.6 μm |
| FSLW-H | 2.4 μm | 2.0 μm | 1.6 μm | 2.4 μm | 2.8 μm | 2.2 μm |
| UaFSLW-H | 2.6 μm | 2.2 μm | 1.9 μm | 2.2 μm | 2.3 μm | 2.2 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, R.; Tan, J.; He, Q. Ultrasonic-Assisted Dissimilar Friction Stir Lap Welding of AA2024 and AZ31: A Comparative Study of Cold and Hot Welding Parameters. Metals 2025, 15, 1191. https://doi.org/10.3390/met15111191
Chen Y, Liu R, Tan J, He Q. Ultrasonic-Assisted Dissimilar Friction Stir Lap Welding of AA2024 and AZ31: A Comparative Study of Cold and Hot Welding Parameters. Metals. 2025; 15(11):1191. https://doi.org/10.3390/met15111191
Chicago/Turabian StyleChen, Yu, Rongcheng Liu, Jie Tan, and Qiwei He. 2025. "Ultrasonic-Assisted Dissimilar Friction Stir Lap Welding of AA2024 and AZ31: A Comparative Study of Cold and Hot Welding Parameters" Metals 15, no. 11: 1191. https://doi.org/10.3390/met15111191
APA StyleChen, Y., Liu, R., Tan, J., & He, Q. (2025). Ultrasonic-Assisted Dissimilar Friction Stir Lap Welding of AA2024 and AZ31: A Comparative Study of Cold and Hot Welding Parameters. Metals, 15(11), 1191. https://doi.org/10.3390/met15111191
