The Microstructure and Mechanical Property of 2024Al/W Materials with High W Content Fabricated by Lower-Temperature Sintering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Densification Behaviour as a Function of Sintering Temperature
3.2. Phase Evolution and Microstructural Development
3.2.1. Phase Composition Analysis
3.2.2. Microstructural Characteristics
3.3. Interfacial Reaction Pathway and Phase Formation Mechanism
3.4. Mechanical Properties and Fracture Behaviour
3.5. Synergistic Strengthening and Toughening Analysis
3.5.1. Orowan Strengthening
3.5.2. Thermal Mismatch Strengthening
3.5.3. Load Transfer Strengthening
3.5.4. Additional Strengthening Contributed by Minor Phases
4. Conclusions
- (1)
- High-W-content 2024Al/W composites were fabricated via SPS at reduced temperatures, resulting in uniform dispersion of W particles throughout the 2024Al matrix. Composite densities reached 99.9%, increasing with sintering temperature.
- (2)
- With increasing sintering temperature, the tensile strength and elongation of 2024Al-W composites first rise and then fall. Under the SPS condition of 480 °C/10 min/30 MPa, the optimum mechanical properties are obtained: the Al18Mg3W2 phase is discontinuously distributed along the Al-W interface and cooperates with nanosized Al2Cu precipitates to balance strength and ductility, giving an ultimate tensile strength of 266.9 MPa and an elongation of 6.2%. At 500 °C, locally overthickened Al18Mg3W2 regions initiate cracks, leading to a pronounced deterioration in mechanical performance.
- (3)
- Among the strengthening mechanisms in the 2024Al-W material, thermal mismatch strengthening provided the dominant contribution to the strength (~19.2 MPa), followed by load transfer strengthening, while the Orowan mechanism was the least significant contributor. After incorporating the corrections for particle distribution and interfacial bonding, the theoretical estimates are in substantially better agreement with the experimental results.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Lin, M.; Liu, C. Enhancing mechanical properties of uniformly distributed nano TiB2/2024 Al composite rolling sheet by pre-stretch aging. J. Alloys Compd. 2022, 913, 165172. [Google Scholar] [CrossRef]
- Li, K.; Ma, G.; Xing, L. Crack suppression via in-situ oxidation in additively manufactured W-Ta alloy. Mater. Lett. 2020, 263, 127212. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ma, E.; Sun, J. Unveiling the intrinsic rhenium effect in Tungsten. Acta Mater. 2024, 264, 119586. [Google Scholar] [CrossRef]
- Dixit, S.; Kashyap, S.; Kailas, S.V.; Chattopadhyay, K. Manufacturing of high strength aluminium composites reinforced with nano tungsten particles for electrical application and investigation on in-situ reaction during processing. J. Alloys Compd. 2018, 767, 1072–1082. [Google Scholar] [CrossRef]
- Rativa-Parada, W.; Nilufar, S. Influence of Heat Treatment on Microstructure, Mechanical Properties, and Damping Behavior of 2024 Aluminum Matrix Composites Reinforced by Carbon Nanoparticles. Nanomaterials 2024, 14, 1342. [Google Scholar] [CrossRef]
- Wisner, B.; Kontsos, A. Investigation of particle fracture during fatigue of aluminum 2024. Int. J. Fatigue 2018, 111, 33–43. [Google Scholar] [CrossRef]
- Sun, S.Q.; Fang, Y.; Zhang, L. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT. J. Mater. Res. Technol. 2020, 9, 3219–3229. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, R.; Li, J. Achieving ultrahigh tensile strength of 1 GPa in a hierarchical nanostructured 2024 Al alloy. Mater. Sci. Eng. A 2020, 788, 139576. [Google Scholar] [CrossRef]
- Araghchi, M.; Mansouri, H.; Vafaei, R. Optimization of the Mechanical Properties and Residual Stresses in 2024 Aluminum Alloy Through Heat Treatment. J. Mater. Eng. Perform. 2018, 27, 3234–3238. [Google Scholar] [CrossRef]
- Feng, Y.C.; Geng, L.; Zheng, Z.Z. Fabrication and characteristics of in situ Al12W particles reinforced aluminum matrix composites by reaction sintering. Mater. Des. 2010, 31, 965–967. [Google Scholar] [CrossRef]
- Xue, Y.; Du, Y.; Zhang, Z. Processing Map of Powder Metallurgy Al-W Alloys at Elevated Temperatures. J. Mater. Eng. Perform. 2017, 26, 3216–3225. [Google Scholar] [CrossRef]
- Lu, D.; You, G.; Peng, L. Microstructures and properties of a multilayered Al/W composite fabricated for γ-ray-shielding applications. Radiat. Phys. Chem. 2022, 198, 110209. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, P.; Cai, J. Enhanced corrosion property of W-Al coatings fabricated on aluminum using surface alloying under high-current pulsed electron beam. J. Alloys Compd. 2017, 723, 258–265. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, Q.; Jia, Y. Effect of W particles on the properties of accumulatively roll-bonded Al/W composites. Mater. Sci. Eng. A 2012, 547, 120–124. [Google Scholar] [CrossRef]
- Metikoš-Huković, M.; Radić, N.; Grubač, Z. The corrosion behavior of sputter-deposited aluminum–tungsten alloys. Electrochim. Acta 2002, 47, 2387–2397. [Google Scholar] [CrossRef]
- Khodabakhshi, F.; Gerlich, A.P. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review. Mater. Manuf. Process. 2018, 36, 77–92. [Google Scholar] [CrossRef]
- Monchoux, J.P.; Couret, A.; Durand, L. Elaboration of Metallic Materials by SPS: Processing, Microstructures, Properties, and Shaping. Metals 2021, 11, 322. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wang, W.X.; Chen, H.S.; Liu, R.F.; Zhang, Y.Q.; Shi, N. A Newly Designed Radiation Shielding Composite by MCNP and Fabricated by SPS Followed by Hot-rolling. Rare Metal Mat. Eng. 2020, 49, 787–796. Available online: http://www.rmme.ac.cn/rmmeen/article/abstract/20181039 (accessed on 13 October 2025).
- Li, P.; Aboulkhair, N.T.; Wu, J. Tailoring the in-situ formation of intermetallic phases in the self-lubricating Al-WS2 composite for enhanced tribological performance with wear track evolution analysis. J. Mater. Res. Technol. 2023, 27, 4891–4907. [Google Scholar] [CrossRef]
- Cao, L.; Hou, C.; Tang, F. Thermal stability and high-temperature mechanical performance of nanostructured W–Cu–Cr–ZrC composite. Compos. Part B 2021, 208, 108600. [Google Scholar] [CrossRef]
- Liu, B.; Cui, G.; Sun, J. Microstructure and mechanical properties of TiB2-TiNw ceramic composite fabricated by SPS. Ceram. Int. 2024, 50, 30168–30174. [Google Scholar] [CrossRef]
- Song, X.; Xue, Y.; Cao, Z. Effects of sintering temperature and holding time on the morphologies and properties of Wf/W-Dia/W composite prepared by SPS. Vacuum 2025, 234, 114118. [Google Scholar] [CrossRef]
- Dasom Kim, K.K.; Hansang, K. Investigation of Formation Behaviour of Al-Cu Intermetallic Compounds in Al-50vol%Cu Composites Prepared by Spark Plasma Sintering under High Pressure. Materials 2021, 14, E266. [Google Scholar] [CrossRef]
- Zhu, H.; Tan, X.; Tu, Q. Effect of Pressure on Densification and Microstructure of W-Cr-Y-Zr Alloy during SPS Consolidated at 1000 °C. Metals 2022, 12, 1437. [Google Scholar] [CrossRef]
- Kanetsuki, S.; Kuwahara, K.; Egawa, S. Effect of thickening outermost layers in Al/Ni multilayer film on thermal resistance of reactively bonded solder joints. Jpn. J. Appl. Phys. 2017, 56, 06GN16. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Feng, P.Z.; Akhtar, F. Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism. Sci. Rep. 2017, 7, 12391. [Google Scholar] [CrossRef]
- Schweizer, P.; Sharma, A.; Pethö, L. Atomic scale volume and grain boundary diffusion elucidated by in situ STEM. Nat. Commun. 2023, 14, 7601. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xiong, W.; Kattner, U.R. Thermodynamic re-assessment of the Al-Co-W system. Calphad 2017, 59, 112–130. [Google Scholar] [CrossRef]
- Bai, Y.; Su, H.; Wu, C. Enhancement of the al/mg dissimilar friction stir welding joint strength with the assistance of ultrasonic vibration. Metals 2021, 11, 1113. [Google Scholar] [CrossRef]
- Han, Y.; Li, Y.; Ye, L. A novel dissolution-precipitation mechanism during liquid phase sintering and its strengthening effects in W-Ni-Fe alloys with low W contents. Mater. Des. 2022, 220, 110841. [Google Scholar] [CrossRef]
- Jamaati, R.; Toroghinejad, M.R. Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding. Mater. Sci. Eng. A 2010, 527, 4146–4151. [Google Scholar] [CrossRef]
- Xiao, P.; Gao, Y.; Yang, C. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles. Mater. Sci. Eng. A 2018, 710, 251–259. [Google Scholar] [CrossRef]
- Ren, H.; Liu, Y.; Sun, Q. Promoting strengthening and grain refinement of aluminum alloy during wire and arc additive manufacturing by adding TiB2 particles. Mater. Sci. Eng. A 2023, 888, 145805. [Google Scholar] [CrossRef]
- Hofmeister, C.; Klimov, M.; Deleghanty, T. Quantification of nitrogen impurity and estimated Orowan strengthening through secondary ion mass spectroscopy in aluminum cryomilled for extended durations. Mater. Sci. Eng. A 2015, 648, 412–417. [Google Scholar] [CrossRef]
- Ma, K.; Wen, H.; Hu, T. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Lupo, M.; Barletta, D.; Sofia, D.; Poletto, M. Calibration of DEM for Cohesive Particles in the SLS Powder Spreading Process. Processes 2021, 9, 1715. [Google Scholar] [CrossRef]
- Elomari, S.; Boukhili, R.; Marchi, C.S. Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites. J. Mater. Sci. 1997, 32, 2131–2140. [Google Scholar] [CrossRef]
- Gupta, R.; Chaudhari, G.P.; Daniel, B.S.S. Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition. Compos. Part B 2018, 140, 27–34. [Google Scholar] [CrossRef]
- Li, P.B.; Chen, L.; Wu, B. Strength-ductility synergy of reduced graphene oxide/2024Al matrix composites by heterogeneous structure design and hybrid nanoparticles optimized interface. J. Alloys Compd. 2022, 898, 162757. [Google Scholar] [CrossRef]
- Jia, L.; Li, S.; Imai, H. Size effect of B4C powders on metallurgical reaction and resulting tensile properties of Ti matrix composites by in-situ reaction from Ti–B4C system under a relatively low temperature. Mater. Sci. Eng. A 2014, 614, 129–135. [Google Scholar] [CrossRef]
- Xiao, X.; Zhou, Z.; Liu, C.; Cao, L. Microstructure and Its Effect on the Intergranular Corrosion Properties of 2024-T3 Aluminum Alloy. Crystals 2022, 12, 395. [Google Scholar] [CrossRef]
- Zhou, D.S.; Geng, H.W.; Zeng, H.W. Suppressing Al2O3 nanoparticle coarsening and Cu nanograin growth of milled nanostructured Cu-5vol.%Al2O3 composite powder particles by doping with Ti. J. Mater. Sci. Technol. 2017, 33, 1323–1328. [Google Scholar] [CrossRef]








| Process | Composition | Tensile Strength | Elongation | Vickers Hardness | Reference |
|---|---|---|---|---|---|
| Extrusion | Al-0.71 wt.% W | 478 MPa | 15.4% | / | [11] |
| Hot-pressing sintering | Al-3vol.%W | 200 MPa | 7.3% | / | [10] |
| Spark plasma sintering | Al-50 wt.%W- 1 wt.%B | 240.2 MPa | 13% | / | [18] |
| Accumulative roll bonding | Al-4.2 vol.%W | 160 MPa | / | 59.98 HV | [14] |
| Friction stir processing | Al-3.6 vol.%W | 210 MPa | / | 65 HV | [4] |
| Temperature/°C | Measured Density/g·cm−3 | Theoretical Density/g·cm−3 | Relative Density/% |
|---|---|---|---|
| 440 | 4.1986 | 4.2140 | 99.6 |
| 460 | 4.2031 | 4.2140 | 99.7 |
| 480 | 4.2114 | 4.2140 | 99.9 |
| 500 | 4.2128 | 4.2140 | 99.9 |
| Material | ∆σ Orowan | ∆σ CTE | ∆σ Load | Estimated Value Before Correction | Estimated Value After Correction | Measured Value |
|---|---|---|---|---|---|---|
| 2024Al-40wt.%W | 1.23 | 17.89 | 4.64 | 23.76 MPa | 24.64 MPa | 25 ± 6.9 MPa [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Pang, X.; Cheng, L. The Microstructure and Mechanical Property of 2024Al/W Materials with High W Content Fabricated by Lower-Temperature Sintering. Metals 2025, 15, 1176. https://doi.org/10.3390/met15111176
Jiang C, Pang X, Cheng L. The Microstructure and Mechanical Property of 2024Al/W Materials with High W Content Fabricated by Lower-Temperature Sintering. Metals. 2025; 15(11):1176. https://doi.org/10.3390/met15111176
Chicago/Turabian StyleJiang, Cunhui, Xiaoxuan Pang, and Liang Cheng. 2025. "The Microstructure and Mechanical Property of 2024Al/W Materials with High W Content Fabricated by Lower-Temperature Sintering" Metals 15, no. 11: 1176. https://doi.org/10.3390/met15111176
APA StyleJiang, C., Pang, X., & Cheng, L. (2025). The Microstructure and Mechanical Property of 2024Al/W Materials with High W Content Fabricated by Lower-Temperature Sintering. Metals, 15(11), 1176. https://doi.org/10.3390/met15111176
