Effect of Austempering Time and Temperature on the Mechanical and Microstructural Properties of a Niobium-Alloyed Austempered Ductile Iron
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Metallographic Analysis of Ductile Iron As-Cast Conditions
3.2. Microstructural Analysis of Austempered Ductile Iron
3.3. X-Ray Diffraction Analysis
3.4. Impact Testing
3.5. Hardness Testing
3.6. Wear Testing
3.7. Tensile Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Górny, M.; Gondek, Ł.; Tyrała, E. Structure Homogeneity and Thermal Stability of Austempered Ductile Iron. Metall. Mater. Trans. A 2021, 52, 2227–2237. [Google Scholar] [CrossRef]
- Sellamuthu, P.; Samuel, D.G.H.; Dinakaran, D.; Premkumar, V.P.; Seetharaman, S. Austempered Ductile Iron (ADI): Influence of Austempering Temperature on Microstructure, Mechanical and Wear Properties and Energy Consumption. Metals 2018, 8, 53. [Google Scholar] [CrossRef]
- Harding, R.A. The production, properties and automotive applications of austempered ductile iron. Kov. Mater. Met. Mater. 2007, 45, 1–16. [Google Scholar]
- Benam, A. Effect of alloying elements on austempered ductile iron (ADI) properties and its process: Review. China Foundry 2015, 12, 54–70. [Google Scholar]
- Hayrynen, K.; Brandenberg, K.; Keough, J. Applications of Austempered Cast Irons. Trans. Am. Foundrymens Soc. 2002, 2, 929–938. [Google Scholar]
- Shih, T.S.; Yang, Z.C. Effects of nickel and processing variables on the mechanical properties of austempered ductile irons. Int. J. Cast Met. Res. 1998, 10, 335–344. [Google Scholar] [CrossRef]
- Cui, J.; Chen, L. Microstructures and Mechanical Properties of a Wear-Resistant Alloyed Ductile Iron Austempered at Various Temperatures. Metall. Mater. Trans. A 2015, 46, 3627–3634. [Google Scholar] [CrossRef]
- Hegde, A.; Sharma, S.S.; Sadanand, R.V. Mechanical characterization and optimization of heat treatment parameters of manganese alloyed austempered ductile iron. J. Mech. Eng. Sci. 2019, 13, 4356–4367. [Google Scholar] [CrossRef]
- Dakre, V.; Peshwe, D.R.; Pathak, S.U.; Likhite, A. TEM Analysis of Austempered Ductile Iron Processed Through Conventional and Two-Step Austempering Process. Trans. Indian Inst. Met. 2019, 72, 911–917. [Google Scholar] [CrossRef]
- Janowak, J.F.; Gundlach, R.B. Development of a Ductile Iron for Commercial Austempering. Trans. Am. Foundrymens Soc. 1983, 91, 377–388. [Google Scholar]
- Voigt, R.C.; Loper, C.R. Austempered ductile iron—Process control and quality assurance. J. Heat Treat. 1984, 3, 291–309. [Google Scholar] [CrossRef]
- Colin-García, E.; Cruz-Ramírez, A.; Romero-Serrano, J.A.; Sánchez-Alvarado, R.G.; Reyes-Castellanos, G. Nodule count effect on microstructure and mechanical properties of hypo-eutectic ADI alloyed with nickel. J. Min. Metall. Sect. B Metall. 2021, 57, 115–124. [Google Scholar] [CrossRef]
- Parhad, P.; Umale, S.; Likhite, A.; Bhatt, J. Characterization of Inoculated Low Carbon Equivalent Iron at Lower Austempering Temperature. Trans. Indian Inst. Met. 2012, 65, 449–458. [Google Scholar] [CrossRef]
- Eric, O.; Jovanović, M.P.; Šiđanin, L.P.; Rajnovic, D. Microstructure and mechanical properties of CuNiMo austempered ductile iron. J. Min. Metall. Sect. B Metall. 2004, 40, 11–19. [Google Scholar] [CrossRef]
- Erfanian-Naziftoosi, H.R.; Haghdadi, N.; Kiani-Rashid, A.R. The Effect of Isothermal Heat Treatment Time on the Microstructure and Properties of 2.11% Al Austempered Ductile Iron. J. Mater. Eng. Perform. 2012, 21, 1785–1792. [Google Scholar] [CrossRef]
- Kovacs, B.V. Development of austempered ductile iron (ADI) for automobile crankshafts. J. Heat Treat. 1987, 5, 55–60. [Google Scholar] [CrossRef]
- Olivera, E.; Tanja, B.; Nikola, S.; Milan, T.; Rade, Đ. Determination of processing window for ADI materials alloyed with copper. Metall. Mater. Eng. 2010, 16, 91–102. [Google Scholar]
- Putatunda, S.K. Influence of austempering temperature on microstructure and fracture toughness of a high-carbon, high-silicon and high-manganese cast steel. Mater. Des. 2003, 24, 435–443. [Google Scholar] [CrossRef]
- Avishan, E.; Aghdam, M.C.; Khanmiri, M.H. Mechanical Stability of High-Carbon Retained Austenite and Corresponding TRIP Effect in Austempered Ductile Iron (ADI). Int. J. Met. 2025. [Google Scholar] [CrossRef]
- Elmasry, N.; Mahdy, A.; Kandil, A. Influence of austempering temperature on microstructure and properties of ductile irons. J. Al-Azhar Univ. Eng. Sect. 2013, 8, 122–128. [Google Scholar]
- Omole, S.O.; Alaneme, K.K.; Oyetunji, A. Mechanical damping characteristics of ductile and grey irons micro-alloyed with combinations of Mo, Ni, Cu and Cr. Acta Metall. Slovaca 2021, 27, 87–93. [Google Scholar] [CrossRef]
- Colin-García, E.; Cruz-Ramírez, A.; Sánchez-Alvarado, R.G.; Moreno-Ríos, M. Comportamiento microestructural y mecánico 369 de CADIs microaleados con molibdeno. Pädi Bol. Cient. Cienc. Básicas Ing. ICBI 2025, 13, 123–130. [Google Scholar]
- Adebayo, A.O.; Ajibola, O.O.; Falodun, O.E.; Borisade, S.G.; Owa, A.F.; Adigun, O.D.; Oyetunji, A.; Alaneme, K.K. Effects of aluminium addition and austempering temperatures on al-alloyed ductile iron microstructure and mechanical properties. Acta Metall. Slovaca 2022, 28, 181–187. [Google Scholar] [CrossRef]
- Hsu, C.H.; Lin, K.T. A study on microstructure and toughness of copper alloyed and austempered ductile irons. Mater. Sci. Eng. A 2011, 528, 5706–5712. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Patnaik, S.C.; Sen, S.; Mahji, J. An austempering study of ductile iron and the effect of copper addition to the tensile properties of austempered ductile iron. J. Mater. Metall. Eng. 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Yazdani, S.; Rahimi, M.A. Wear behavior of an austempered ductile iron containing Mo-Ni-Cu. Mater. Sci. Forum 2005, 475–479, 199–202. [Google Scholar] [CrossRef]
- Sheikh, M.A. Effects of Heat Treatment and Alloying Elements on Characteristics of Austempered Ductile Iron. Ph.D. Thesis, University of Engineering and Technology Lahore, Lahore, Pakistan, 2008. [Google Scholar]
- Sckudlarek, W.; Krmasha, M.N.; Al-Rubaie, K.S.; Preti, O.; da Costa, C.E. Effect of austempering temperature on microstructure and mechanical properties of ductile cast iron modified by niobium. J. Mater. Res. Technol. 2021, 12, 2414–2425. [Google Scholar] [CrossRef]
- Fraś, E.; Górny, M.; Kawalec, M. Effect of small additions of vanadium and niobium on structure and mechanical properties of ductile iron. Arch. Foundry Eng. 2007, 7, 89–92. [Google Scholar]
- Souza, T.; Nogueira, R.; Franco, F.; Paulino-Aguilar, M.T.; Cetlin, P. Mechanical and Microstructural Characterization of Nodular Cast Iron (NCI) with Niobium Additions. Mater. Res. 2014, 17, 1167–1172. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Hu, H.; Mohrbacher, H.; Zhai, Q. Effects of niobium addition on microstructure and tensile behavior of as-cast ductile iron. Mater. Sci. Eng. A 2017, 688, 416–428. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, L.; Zhang, W.; Mohrbacher, H.; Zhai, Q. Effects of niobium alloying on microstructure, toughness and wear resistance of austempered ductile iron. Mater. Sci. Eng. A 2019, 760, 186–194. [Google Scholar] [CrossRef]
- Abdullah, B.; Alias, S.K.; Jaffar, A.; Rashid, A.A.; Ramli, A. Tensile Strength Properties of Niobium Alloyed Austempered Ductile Iron on Different Austempering Temperature. Adv. Mater. Res. 2012, 457, 1155–1158. [Google Scholar] [CrossRef]
- Sambas, A.; Ananto, G.; Gunara, S. Analyze the effect of phosphorus on the mechanical properties and microstructure on cast iron. MATEC Web Conf. 2018, 204, 05008. [Google Scholar] [CrossRef]
- Putatunda, S.K.; Gadicherla, P.K. Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as-cast structure. Mater. Sci. Eng. A 1999, 268, 15–31. [Google Scholar] [CrossRef]
- Bedolla-Jacuinde, A.; Hernández-Hernández, R.A.; Guerra, F.V.; Mejía, I. The role of chromium during austempering of ductile iron. Metall. Res. Technol. 2020, 117, 104. [Google Scholar] [CrossRef]
- Baer, W.; Wossidlo, P.; Abbasi, B.; Cassau, M.; Kossert, R. Large scale testing and statistical analysis of dynamic fracture toughness of ductile cast iron. Eng. Fract. Mech. 2009, 76, 1024–1036. [Google Scholar] [CrossRef]
- Iacoviello, F.; Di Bartolomeo, O.; Di Cocco, V.; Piacente, V. Damaging micromechanisms in ferritic–pearlitic ductile cast irons. Mater. Sci. Eng. A 2008, 478, 181–186. [Google Scholar] [CrossRef]
- Dasgupta, R.K.; Mondal, D.K.; Chakrabarti, A.K. Evolution of Microstructures During Austempering of Ductile Irons Alloyed with Manganese and Copper. Metall. Mater. Trans. A 2013, 44, 1376–1387. [Google Scholar] [CrossRef]
- Ruxanda, R.E.; Stefanescu, D.M.; Piwonka, T.S. Microstructure Characterization of Ductile Thin-Wall Iron Castings. Trans.-Am. Foundrymens Soc. 2002, 2, 1131–1148. [Google Scholar]
- Darmawan, A.S.; Purboputro, P.I.; Yulianto, A.; Anggono, A.D.; Kartika, N.D. Effect of Magnesium on the Strength, Stiffness and Toughness of Nodular Cast Iron. Mater. Sci. Forum 2020, 991, 17–23. [Google Scholar] [CrossRef]
- Bedolla-Jacuinde, A.; Solis, E.; Hernandez, B. Effect of niobium in medium alloyed ductile cast irons. Int. J. Cast Met. Res. 2003, 16, 481–486. [Google Scholar] [CrossRef]
- ASTM E23; Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2025.
- ASTM E18-22; Standard Test Methods for Rockwell Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM G132-96; Standard Test Method for Pin Abrasion Testing. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM E8/E8M-22; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- Xu, Z.; Liu, X.; Li, G.; Zhang, W. Effect of Nb on Microstructure, Mechanical Properties and Wear Resistance of Ductile Iron. Int. J. Met. 2025. [Google Scholar] [CrossRef]
- Pan, S.; Zeng, F.; Su, N.; Xian, Z. The effect of niobium addition on the microstructure and properties of cast iron used in cylinder head. J. Mater. Res. Technol. 2020, 9, 1509–1518. [Google Scholar] [CrossRef]
- Mohrbacher, H.; Brambila, J.; Holly, M.; Barile, B. The Different Stages of Niobium Precipitation in Cast-Iron Alloys. In Proceedings of the Microalloying ’25: International Symposium on Microalloying, Vail, CO, USA, 2–5 June 2025. [Google Scholar]
- Akbarzadeh-Chiniforush, E.; Iranipour, N.; Yazdani, S. Effect of nodule count and austempering heat treatment on segregation behavior of alloying elements in ductile cast iron. China Foundry 2016, 13, 217–222. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Y.C.; Jiang, W.; Wang, C.; Guo, E.; Fu, Y.; Zhao, S. Effect of Niobium on Microstructure and Mechanical Properties of Ductile Iron with High Strength and Ductility. J. Mater. Eng. Perform. 2023, 33, 896–905. [Google Scholar] [CrossRef]
- Jiménez-García, E.P.; Becerra-Mayorga, C.Y.; Vargas-Ramírez, M.; Cardoso-Legorreta, E.; García-Serrano, J. Efecto del austemperizado en un hierro dúctil aleado con cromo y niobio. Tópicos Investig. Cienc. Tierra Mater. 2024, 11, 101–109. [Google Scholar] [CrossRef]
- Konca, E.; Tur, K.; Koç, E. Effects of Alloying Elements (Mo, Ni, and Cu) on the Austemperability of GGG-60 Ductile Cast Iron. Metals 2017, 7, 320. [Google Scholar] [CrossRef]
- Bendikiene, R.; Ciuplys, A.; Cesnavicius, R.; Jutas, A.; Sherbakov, S. Influence of Austempering Temperatures on the microstructure and mechanical properties of austempered ductile cast iron. Metals 2021, 11, 967. [Google Scholar] [CrossRef]
- Ahmed, M.; Soliman, M.; Youssef, M.; Bähr, R.; Nofal, A. Effect of Niobium on the Microstructure and Mechanical Properties of Alloyed Ductile Irons and Austempered Ductile Irons. Metals 2021, 11, 703. [Google Scholar] [CrossRef]
- Lerner, Y.S.; Kingsbury, G.R. Wear resistance properties of austempered ductile iron. J. Mater. Eng. Perform. 1997, 7, 48–52. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Martis, C.J.; Putatunda, S.K.; Boileau, J. An investigation on the stability of austenite in austempered ductile cast iron (ADI). Mater. Sci. Eng. A 2015, 626, 237–246. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, S.; Xiao, Z.; You, S.; Zhao, J.; Lv, Y. Effects of nickel on low-temperature impact toughness and corrosion resistance of high-ductility ductile iron. Mater. Des. 2012, 41, 37–42. [Google Scholar] [CrossRef]
- Ghasemi, R.; Salomonsson, K.; Dioszegi, A. Synergistic Effects of Austempering Variables on the Microstructure and Mechanical Properties of Low-Temperature Austenitized Compacted Graphite Irons. J. Mater. Eng. Perform. 2025, 34, 10193–10206. [Google Scholar] [CrossRef]
- Benedito, A.V.; Benedetty-Torres, C.A.; de Castro-Silva, R.M.; Krahl, P.A.; Taissum-Cardoso, D.C.; de Andrade-Silva, F.; Martins, C.H. Effects of Niobium Addition on the Mechanical Properties and Corrosion Resistance of Microalloyed Steels: A Review. Buildings 2024, 14, 1462. [Google Scholar] [CrossRef]














| Element wt.% | H1 | H2 | H3 |
|---|---|---|---|
| C | 3.76 | 3.62 | 3.67 |
| Si | 2.54 | 2.64 | 2.61 |
| Mn | 0.38 | 0.32 | 0.32 |
| S | 0.011 | 0.010 | 0.009 |
| P | 0.009 | 0.007 | 0.009 |
| Mg | 0.047 | 0.046 | 0.047 |
| Nb | 0 | 0.11 | 0.32 |
| Cr | 0.02 | 0.02 | 0.01 |
| Ti | 0.002 | 0.004 | 0.003 |
| Mo | 0.01 | 0.01 | 0.01 |
| Ni | 0.046 | 0.042 | 0.044 |
| Cu | 0.22 | 0.19 | 0.23 |
| CE | 4.60 | 4.50 | 4.54 |
| Propety/Alloy | H1 | H2 | H3 |
|---|---|---|---|
| Nodule size (µm) | 21.72 ± 1.65 | 29.96 ± 1.32 | 28.73 ± 1.27 |
| Nodularity (nodularity%) | 87.23 ± 1.57 | 81.50 ± 1.73 | 81.90 ± 1.69 |
| Internodule distance (µm) | 23.92 ± 1.19 | 35.51 ± 1.62 | 30.66 ± 1.32 |
| Nodule count (nod/mm2) | 256.1 ± 27.56 | 113.7 ± 23.18 | 156.4 ± 25.12 |
| Carbides (vol%) | 0.53 ± 0.07 | 0.95 ± 0.05 | 2.48 ± 0.07 |
| Pearlite (vol%) | 25.44 ± 0.31 | 63.17 ± 0.22 | 73.31 ± 0.28 |
| Ferrite (vol%) | 66.03 ± 0.17 | 23.42 ± 0.23 | 17.54 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra Mayorga, C.Y.; Vargas Ramírez, M.; Cardoso Legorreta, E.; García Serrano, J.; Martínez Vázquez, J.M.; Morales Cruz, E.U.; Aristeo Domínguez, C. Effect of Austempering Time and Temperature on the Mechanical and Microstructural Properties of a Niobium-Alloyed Austempered Ductile Iron. Metals 2025, 15, 1168. https://doi.org/10.3390/met15111168
Becerra Mayorga CY, Vargas Ramírez M, Cardoso Legorreta E, García Serrano J, Martínez Vázquez JM, Morales Cruz EU, Aristeo Domínguez C. Effect of Austempering Time and Temperature on the Mechanical and Microstructural Properties of a Niobium-Alloyed Austempered Ductile Iron. Metals. 2025; 15(11):1168. https://doi.org/10.3390/met15111168
Chicago/Turabian StyleBecerra Mayorga, César Yeshua, Marissa Vargas Ramírez, Edgar Cardoso Legorreta, Jesús García Serrano, José Merced Martínez Vázquez, Erick Uriel Morales Cruz, and Cynthia Aristeo Domínguez. 2025. "Effect of Austempering Time and Temperature on the Mechanical and Microstructural Properties of a Niobium-Alloyed Austempered Ductile Iron" Metals 15, no. 11: 1168. https://doi.org/10.3390/met15111168
APA StyleBecerra Mayorga, C. Y., Vargas Ramírez, M., Cardoso Legorreta, E., García Serrano, J., Martínez Vázquez, J. M., Morales Cruz, E. U., & Aristeo Domínguez, C. (2025). Effect of Austempering Time and Temperature on the Mechanical and Microstructural Properties of a Niobium-Alloyed Austempered Ductile Iron. Metals, 15(11), 1168. https://doi.org/10.3390/met15111168

