Construction of NiSe2/WO3@SiMPs Heterojunction with Enhanced Photoelectrochemical Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WO3
2.3. Preparation of NiSe2
2.4. Preparation of NiSe2/WO3@SiMPs
2.5. Preparation of Working Electrodes
2.6. Characterizations
2.7. PEC Measurements
3. Results and Discussion
3.1. Characterizations of NiSe2/WO3@SiMPs Composites
3.2. PEC Performance
3.3. PEC Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanati, S.; Morsali, A.; Garcia, H. First-row transition metal-based materials derived from bimetallic metal-organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy Environ. Sci. 2022, 15, 3119–3151. [Google Scholar] [CrossRef]
- Panchenko, V.A.; Kovalev, A.A.; Litti, Y.V.; Daus, Y.V. Prospects for the production of green hydrogen: Review of countries with high potential. Int. J. Hydrogen Energy 2023, 48, 4551–4571. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, R.; Lv, Z.; Liu, J.; Zhou, H.; Xu, C. Green hydrogen: A promising way to the carbon-free society. Chin. J. Chem. Eng. 2022, 43, 2–13. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, Y.; Li, Y.; Yang, L.; Ren, H.; Wang, X.; Fuji, R.; Kitao, O.; Nakamura, T.; Sasaki, S. Panchromatic Pt/TiO2-based photocatalysts sensitized with carboxylated chlorin dyads for water splitting hydrogen evolution. Appl. Surf. Sci. 2023, 619, 156570. [Google Scholar] [CrossRef]
- Stratakes, B.M.; Miller, A.J.M. H2 evolution at an electrochemical “underpotential” with an iridium-based molecular photoelectrocatalyst. ACS Catal. 2020, 10, 9006–9018. [Google Scholar] [CrossRef]
- Faraji, M.; Yousefi, M.; Yousefzadeh, S.; Zirak, M.; Naseri, N.; Jeon, T.H.; Choi, W.; Moshfegh, A.Z. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 2019, 12, 59–95. [Google Scholar] [CrossRef]
- Farooq, U.; Ahmad, T.; Naaz, F.; Islam, S. Review on metals and metal oxides in sustainable energy production: Progress and perspectives. Energy Fuels 2023, 37, 1577–1632. [Google Scholar] [CrossRef]
- Yao, T.; An, X.; Han, H.; Chen, J.Q.; Li, C. Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 2018, 8, 1800210. [Google Scholar] [CrossRef]
- Sun, K.; Shen, S.; Liang, Y.; Burrows, P.E.; Mao, S.S.; Wang, D. Enabling silicon for solar-fuel production. Chem. Rev. 2014, 114, 8662–8719. [Google Scholar] [CrossRef]
- Jing, S.; Jiang, H.; Hu, Y.; Li, C. Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode. J. Mater. Chem. A 2014, 2, 16360–16364. [Google Scholar] [CrossRef]
- Lichterman, M.F.; Sun, K.; Hu, S.; Zhou, X.; McDowell, M.T.; Shaner, M.R.; Richter, M.H.; Crumlin, E.J.; Carim, A.I.; Saadi, F.H.; et al. Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation. Catal. Today 2016, 262, 11–23. [Google Scholar] [CrossRef]
- Wu, P.; Liu, Z.; Chen, D.; Zhou, M.; Wei, J. Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting. Appl. Surf. Sci. 2018, 440, 1101–1106. [Google Scholar] [CrossRef]
- Lin, S.; Ren, H.; Wu, Z.; Sun, L.; Zhang, X.; Lin, Y.; Zhang, K.; Lin, C.; Tian, Z.; Li, J. Direct Z-scheme WO3 nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting. J. Energy Chem. 2021, 59, 721–729. [Google Scholar] [CrossRef]
- Hamann, T.W.; Lewis, N.S. Control of the stability, electron-transfer kinetics, and pH-dependent energetics of Si/H2O interfaces through methyl termination of Si (111) surfaces. J. Phys. Chem. B 2006, 110, 22291–22294. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Liu, G.; Wang, X.; Wang, X.; Han, H.; Li, C. Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica. J. Catal. 2012, 293, 61–66. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Zhang, X.; Liu, D.; Srinivas, K.; Ma, F.; Wang, B.; Yu, B.; Wu, Q.; Chen, Y. Facile and scalable synthesis of heterostructural NiSe2/FeSe2 nanoparticles as efficient and stable binder-free electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 35198–35208. [Google Scholar] [CrossRef]
- Yang, Y.; Kang, Y.; Zhao, H.; Dai, X.; Cui, M.; Luan, X.; Zhang, X.; Nie, F.; Ren, Z.; Song, W. An interfacial electron transfer on tetrahedral NiS2/NiSe2 heterocages with dual--phase synergy for efficiently triggering the oxygen evolution reaction. Small 2020, 16, 1905083. [Google Scholar] [CrossRef]
- Jafari, F.; Gholivand, M.B. Investigation of the oxygen evolution reaction at the NiSe2/WO3 nanocomposite catalyst. Mater. Today Chem. 2023, 29, 101432. [Google Scholar] [CrossRef]
- Rosa, D.; Remmani, R.; Bavasso, I.; Bracciale, M.P.; Di Palma, L. Biochar supported Fe–TiO2 composite for wastewater treatment: Solid-state synthesis and mechanistic insights. Chem. Eng. Sci. 2025, 317, 122076. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, W.; Chen, X.; Li, J.; Yang, H.; Zhang, L.; Yang, P. Nanospherical Fe3O4 modified NixSy@SiMPs composite materials improve photoelectrochemical Performance. J. Mater. Sci. Mater. Electron. 2024, 35, 244–253. [Google Scholar]
- Guo, H.S.; Zhao, W.F.; Ge, Q.M.; Jiang, N.; Liu, M.; Cong, H. Photoelectrochemical water splitting improved by a cucurbit[7]uril-induced ternary heterojunction. Chem. Eng. J. 2025, 505, 159340. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Liu, S.; Zhang, X.; Zhang, Z.; Li, Y.; Li, G.; Dimitrov, D. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal. B Environ. 2019, 254, 76–85. [Google Scholar] [CrossRef]
- Christodoulou, X.; Velasquez-Orta, S.B. Microbial electrosynthesis and anaerobic fermentation: An economic evaluation for acetic acid production from CO2 and CO. Environ. Sci. Technol. 2016, 50, 11234–11242. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Si, C.; Peng, Z.; Zhang, Z. Tungsten diselenide nanoplates as advanced lithium/sodium ion electrode materials with different storage mechanisms. Nano Res. 2017, 10, 2584–2598. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Xin, L.; Wu, M.; Sun, W.; Lou, X. Pollen-inspired synthesis of porous and hollow NiO elliptical microstructures assembled from nanosheets for high-performance electrochemical energy storage. Chem. Eng. J. 2017, 321, 546–553. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, C.; Liu, H.; Feng, L. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B Environ. 2020, 276, 119165. [Google Scholar] [CrossRef]
- Guo, K.; Yang, F.; Cui, S.; Chen, W.; Mi, L. Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv. 2016, 6, 46523–46530. [Google Scholar]
- Chen, S.; Huang, Y.; Li, H.; Wang, F.; Xu, W.; Zheng, D.; Lu, X. One-Pot Synthesis of NiSe2 with layered structure for nickel-zinc battery. Molecules 2023, 28, 1098. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Liu, Z. Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2016, 15, 9684–9691. [Google Scholar]
- Liu, L.; Ruan, M.; Wang, C.; Liu, Z. Optimization of the BiO8 polar group of BiVO4 by Cl−-embedded modification to manipulate bulk-surface carrier separation for achieving efficient Piezo-PEC water oxidation. Appl. Catal. B Environ. 2024, 354, 124117. [Google Scholar] [CrossRef]
- Chen, X.; Ruan, M.; Wang, C.; Zhong, T.; Liu, Z. Phase engineering to construct In2S3 heterophase junctions and abundant active boundaries and surfaces for efficient Pyro-PEC performance in CdS/In2S3. J. Mater. Chem. A 2024, 12, 15440–15452. [Google Scholar] [CrossRef]
- Fang, G.; Liu, Z.; Han, C.; Wang, P.; Ma, X.; Lv, H.; Huang, C.; Cheng, Z.; Tong, Z. Promising CoFe-NiOOH ternary polymetallic cocatalyst for BiVO4-based photoanodes in photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 3842–3850. [Google Scholar] [CrossRef]
- Song, K.; Hou, H.; Gong, C.; Gao, F.; Zhang, D.; Zhi, F.; Yang, W.; He, F. Enhanced solar water splitting of BiVO4 photoanodes by in situ surface band edge modulation. J. Mater. Chem. A 2022, 10, 22561–22570. [Google Scholar] [CrossRef]
- Wei, P.; Wen, Y.; Lin, K.; Li, X. 2D/3D WO3/BiVO4 heterostructures for efficient photoelectrocatalytic water splitting. Int. J. Hydrogen Energy 2021, 46, 27506–27515. [Google Scholar] [CrossRef]
- Wang, H.; Xia, Y.; Wen, N.; Shu, Z.; Jiao, X.; Chen, D. Surface states regulation of sulfide-based photoanode for photoelectrochemical water splitting. Appl. Catal. B Environ. 2022, 300, 120717. [Google Scholar] [CrossRef]
- Bai, P.; Xie, J.; Wang, H.; Kang, X.; Wang, X. α-Co(OH)2 with interlayer anions for photocatalytic/photoelectrocatalytic water splitting. Appl. Surf. Sci. 2023, 640, 158305. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, W.; Cheng, L.; Jiang, L.; Deng, X.; Yan, J.; Yang, H. Integration of Fe3O4 nanospheres and micropyramidal textured silicon wafer with improved photoelectrochemical performance. J. Mater. Sci. Mater. Electron. 2021, 32, 5176–5185. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Xie, H.; Liu, Y.; Meng, C.; Zhang, P.; Fan, F.; Li, R.; Li, C. Modulating oxygen vacancies in lead chromate for photoelectrocatalytic water splitting. Adv. Mater. 2023, 35, 2300914. [Google Scholar] [CrossRef]
- Sun, H.; Hua, W.; Liang, S.; Li, Y.; Wang, J. A self-adaptive semiconductor-liquid junction for highly active and stable solar water splitting. J. Mater. Chem. A 2022, 10, 20414–20423. [Google Scholar] [CrossRef]
- Fu, Y.M.; Dong, C.L.; Zhou, W.; Lu, Y.R.; Huang, Y.C.; Liu, Y.; Guo, P.H.; Zhao, L.; Chou, W.C.; Shen, S.H. A ternary nanostructured α-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting. Appl. Catal. B Environ. 2020, 260, 118206. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, D.; Li, D.; Xiao, M.; Deng, Y.; Han, Y.; Tao, R.; Fan, X.; Liu, K. A novel p-type CoSe2 co-catalyst cooperated with hematite for boosting photoelectrochemical water splitting. Fuel 2024, 362, 130931. [Google Scholar] [CrossRef]
- Acharya, L.; Nayak, S.; Pattnaik, S.P.; Acharya, R.; Parida, K. Resurrection of boron nitride in pn type-II boron nitride/B-doped-g-C3N4 nanocomposite during solidstate Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. J. Colloid Interface Sci. 2020, 566, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Du, R.; Zhang, L.; Zhu, H.; Zhang, H.; Wang, P. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 2013, 7, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hu, Y.; Meng, S.; Fu, X. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B Environ. 2014, 150, 564–573. [Google Scholar] [CrossRef]
- Murillo-Sierra, J.C.; Hernández-Ramírez, A.; Zhao, Z.; Martínez-Hernández, A.; Gracia-Pinilla, M.A. Construction of direct Z-scheme WO3/ZnS heterojunction to enhance the photocatalytic degradation of tetracycline antibiotic. J. Environ. Chem. Eng. 2021, 9, 105111. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, J.; Liu, J.; Zhong, Z.; Chen, Y.; Yang, P.; Wang, H. Construction of NiSe2/WO3@SiMPs Heterojunction with Enhanced Photoelectrochemical Performance. Metals 2025, 15, 1164. https://doi.org/10.3390/met15111164
Zhang L, Li J, Liu J, Zhong Z, Chen Y, Yang P, Wang H. Construction of NiSe2/WO3@SiMPs Heterojunction with Enhanced Photoelectrochemical Performance. Metals. 2025; 15(11):1164. https://doi.org/10.3390/met15111164
Chicago/Turabian StyleZhang, Li, Jie Li, Jialu Liu, Zhuo Zhong, Yangyang Chen, Peng Yang, and Hui Wang. 2025. "Construction of NiSe2/WO3@SiMPs Heterojunction with Enhanced Photoelectrochemical Performance" Metals 15, no. 11: 1164. https://doi.org/10.3390/met15111164
APA StyleZhang, L., Li, J., Liu, J., Zhong, Z., Chen, Y., Yang, P., & Wang, H. (2025). Construction of NiSe2/WO3@SiMPs Heterojunction with Enhanced Photoelectrochemical Performance. Metals, 15(11), 1164. https://doi.org/10.3390/met15111164

