New Welding Materials and Green Joint Technology
1. Introduction
2. An Overview of the Published Articles
2.1. Innovative Joint Technologies
2.2. Novel Welding Materials
2.3. Welding Quality Monitoring
3. Conclusions and Outlook
Conflicts of Interest
List of Contributions
- Yamashita, M.; Nishimura, Y.; Imayoshi, A.; Nikawa, M. Joining of Copper and Aluminum Alloy A6061 Plates at Edges by High-Speed Sliding with Compression. Metals 2024, 14, 878. https://doi.org/10.3390/met14080878.
- Livieri, P.; Tovo, R. Optimization of Welded Joints under Fatigue Loadings. Metals 2024, 14, 613. https://doi.org/10.3390/met14060613.
- Kotlarski, G.; Kaisheva, D.; Anchev, A.; Ormanova, M.; Stoyanov, B.; Dunchev, V.; Valkov, S. Electron-Beam Welding of Titanium and Ti6Al4V Using Magnetron-Sputtered Nb, V, and Cu Fillers. Metals 2024, 14, 417. https://doi.org/10.3390/met14040417.
- Dong, B.; Li, Z.; Yu, G.; Li, S.; Tian, C.; Bian, Y.; Shu, Z.; He, X. Effect of Surface-Active Element Oxygen on Heat and Mass Transfer in Laser Welding of Dissimilar Metals: Numerical and Experimental Study. Metals 2022, 12, 556. https://doi.org/10.3390/met12040556.
- Han, P.; Lu, Z.; Zhang, X. Sn-0.7Cu-10Bi Solder Modification Strategy by Cr Addition. Metals 2022, 12, 1768. https://doi.org/10.3390/met12101768.
- Liu, X.; Lu, G.; Ji, Z.; Wei, F.; Yao, C.; Wang, J. Effect of Ni-Coated Carbon Nanotubes Additions on the Eutectic Sn-0.7Cu Lead-Free Composite Solder. Metals 2022, 12, 1196. https://doi.org/10.3390/met12071196.
- Huang, C.-D.; Hwang, J.-R.; Huang, J.-Y. Prediction of Fatigue Crack Growth in Vacuum-Brazed Titanium Alloy. Metals 2023, 13, 1879. https://doi.org/10.3390/met13111879.
- Lu, G.; Lin, B.; Gao, Z.; Li, Y.; Wei, F. Effect of Ni-MOF Derivatives on the Electrochemical Corrosion Behavior of Sn-0.7Cu Solders. Metals 2022, 12, 1172. https://doi.org/10.3390/met12071172.
- Yu, R.; Huang, Y.; Qiu, S.; Peng, Y.; Wang, K. Welding Quality Detection for Variable Groove Weldments Based on Infrared Sensor and Artificial Neural Network. Metals 2022, 12, 2124. https://doi.org/10.3390/met12122124.
References
- Zhang, J.; Li, G.; Wang, H.; Wan, X.; Hu, M.; Meng, Q. Microstructure, Non-Metallic Inclusions and Impact Toughness of High-Mn Cryogenic Steel Weld Metal. Sci. Technol. Weld. Join. 2022, 27, 553–563. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Wan, X.; Zhou, S.; Wei, R.; Zhu, C.; Li, G.; Wu, K. Impacts of Nb on Grain Refinement in a Simulated Coarse-Grained-Heat-Affected-Zone of Ultra-High-Strength Steels. Sci. Technol. Weld. Join. 2023, 28, 608–618. [Google Scholar] [CrossRef]
- Qu, Y.; Ba, L.; Li, C.; Pan, J.; Ma, C.; Di, X. Effect of Grain Size and Segregation on the Cryogenic Toughness Mechanism in Heat-Affected Zone of High Manganese Steel. Mater. Charact. 2024, 213, 114030. [Google Scholar] [CrossRef]
- Grimme, C.; Ma, K.; Kupec, R.; Oskay, C.; White, E.M.H.; Knowles, A.J.; Galetz, M.C. Nanocrystalline Y2O3-Modified Metal Matrix Composite Coatings with Improved Resistance to Thermocyclic Oxidation and V2O5-Induced Type II Hot Corrosion. Surf. Coat. Technol. 2024, 485, 130891. [Google Scholar] [CrossRef]
- Sharma, K.; Morlec, E.; Valet, S.; Camenzind, M.; Weisse, B.; Rossi, R.M.; Sorin, F.; Boesel, L.F. Polydimethylsiloxane Based Soft Polymer Optical Fibers: From the Processing-Property Relationship to Pressure Sensing Applications. Mater. Des. 2023, 232, 112115. [Google Scholar] [CrossRef]
- Lin, L.; Wu, H.; Lin, K.; Li, Y.; Ni, P.; Lu, D.; Sheng, P.; Wu, S. Effect of Yttrium Nitrate Coating on the Vat Photopolymerization Forming Process and Sintering Properties of Aluminum Nitride Ceramics. Addit. Manuf. 2024, 84, 104115. [Google Scholar] [CrossRef]
- Ma, Q.; Qiang, R.; Shao, Y.; Yang, X.; Chen, Y.; Xue, R.; Ren, F.; Ding, Y.; Rong, L.; Fang, J.; et al. Dielectric-Magnetic Synergistic Construction of 2D FeCo/Co8FeS8/C Composites for Efficient Electromagnetic Wave Capture. J. Mater. Res. Technol. 2024, 30, 7779–7788. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Wu, P. Self-Evolving Hierarchical Hydrogel Fibers with Circadian Rhythms and Memory Functions. Adv. Mater. Wiley Online Libr. 2024, 36, 2404506. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Mei, X.; Zhou, J.; Wang, X.; Wei, F.; Mei, H.; Zhao, S.; Lu, Y.; Cui, J. Laser-Induced Self-Limiting Welding of Ag Nanowires with High Mechanical and Electrical Performance. Adv. Mater. Wiley Online Libr. 2024, 36, 2408575. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Xu, J.; Jing, C.; Sheng, L.; Ru, H.; Xia, H. Laser Welding Process and Strength Enhancement of Carbon Fiber Reinforced Thermoplastic Composites and Metals Dissimilar Joint: A Review. Chin. J. Aeronaut. 2023, 36, 13–31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F. New Welding Materials and Green Joint Technology. Metals 2025, 15, 1095. https://doi.org/10.3390/met15101095
Wei F. New Welding Materials and Green Joint Technology. Metals. 2025; 15(10):1095. https://doi.org/10.3390/met15101095
Chicago/Turabian StyleWei, Fuxiang. 2025. "New Welding Materials and Green Joint Technology" Metals 15, no. 10: 1095. https://doi.org/10.3390/met15101095
APA StyleWei, F. (2025). New Welding Materials and Green Joint Technology. Metals, 15(10), 1095. https://doi.org/10.3390/met15101095