Influence of Microstructure and Geometric Discontinuity Introduced by Weld Reinforcement Height on the Corrosion Behavior of SA106B Welded Joints in a Flowing Solution
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rotating Disk Electrode Corrosion Tests and Electrochemical Measurements
2.3. Characterization of the Corroded Surface
2.4. Computational Fluid Dynamics Simulation
3. Results
3.1. Metallographic Structure
3.2. Electrochemical Impedance Spectrum Analysis
3.3. Surface Characterization Analysis
3.3.1. Corrosion Morphologies Before Removing Corrosion Products
3.3.2. Corrosion Morphologies After Removing Corrosion Products
3.4. Galvanic Behavior
3.5. Flow Field Analysis
4. Discussion
5. Conclusions
- (1)
- At the same flow velocity, the local disturbance due to the convex weld caused more severe corrosion than the flat weld. However, the characteristic of preferred corrosion in the WZ was not changed by flow velocity.
- (2)
- The corrosion rate of both the flat and convex welds increased with increasing experimental flow velocity. It was more obvious for the convex weld, which contributed a maximum of 45.77% to the entire corrosion at 6.9 m/s.
- (3)
- The corrosion behavior of SA106B welded joints was influenced by the combined effects of mass transfer, wall shear stress, and galvanic corrosion. The aggravating effect of geometric discontinuity on the corrosion of the downstream BM and HAZ was far less than that of the upstream BM and HAZ. The corrosion of the downstream samples was not significantly aggravated at a low flow velocity of 0.5 m/s.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okonkwo, B.O.; Ming, H.; Zhang, Z.; Wang, J.; Rahimi, E.; Hosseinpour, S.; Davoodi, A. Microscale investigation of the correlation between microstructure and galvanic corrosion of low alloy steel A508 and its welded 309/308L stainless steel overlayer. Corros. Sci. 2019, 154, 49–60. [Google Scholar] [CrossRef]
- Daud, N.M.R.N.M.; Eng, K.K.; Jumbri, K.; Nor, A.M.; Suhor, M.F.; Borhan, N.; Abas, A.Z.; Aizamddin, M.F.; Mohd Pu’ad, M.J.; Muhammad, M.F. Benchmarking the impact of nickel filler addition, weld hardness, environmental pH, and corrosion inhibitors on A333 carbon steel pipe weld corrosion. Results Eng. 2023, 20, 101633. [Google Scholar] [CrossRef]
- Zhang, D.L.; Liu, R.; Liu, Y.S.; Xing, S.-H.; He, Z.-H.; Qian, Y.; Liu, J.-Z.; Dou, X.-H.; Zhang, X.-W. Combined experimental and simulation study on corrosion behavior of B10 copper-nickel alloy welded joint under local turbulence. J. Iron Steel Res. Int. 2023, 30, 1598–1612. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Q.; Zhou, X.; Liu, M.; Wu, T.; Dong, Z. Desulfovibrio desulfuricans induced corrosion of welded joint in X80 pipeline steel below delaminated coating. Constr. Build. Mater. 2024, 411, 134335. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Luan, D.; Yang, Y.; Li, L.; Zhang, X.; Guo, Y.; Zeng, H.; Zhao, X. Effect of CO2 pressure on the corrosion behavior of base metal and welded joint of L415 pipeline steel in coalbed methane produced water. Mater. Today Commun. 2025, 48, 113677. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Yang, L.; Wang, Y.-Z.; Du, X.-L. Compression behavior and reliability of welded stainless-steel tube column with random corrosion. J. Constr. Steel Res. 2025, 235, 109865. [Google Scholar] [CrossRef]
- Nofrizal, N.; Wulandari, M.; Impey, S.; Georgarakis, K.; Papanikolaou, M.; Raja, P.B. An experimental and simulation screening of X-65 steel weldment corrosion in high flow rate conditions. Mater. Today Commun. 2024, 39, 108793. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, J.; Huang, T.; Yang, Z.; Zhang, S.; Zhu, Z.; Fan, K.; Luo, X.; Li, X.; Zhou, Q.; et al. Effects of radial bending stress on hot corrosion behaviour of dissimilar martensitic heat-resistant steel weldments in ultra-supercritical unit. Int. J. Press. Vessel. Pip. 2024, 209, 105205. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Li, Y.; Feng, Y.; Zhao, F. Study on microstructure, mechanical and corrosion behavior of Ti-6Al-4V titanium alloy by Keyhole gas tungsten arc welding. Mater. Today Commun. 2024, 40, 109530. [Google Scholar] [CrossRef]
- Ilman, M.N.; Muslih, M.R.; Triwibowo, N.A.; Sehono; Purwaningrum, Y. Analyses of tensile, fatigue crack growth and corrosion properties of dissimilar welded AA6061-T6/AA5083-H112 joints fabricated by GMAW and FSW: A comparison. Next Mater. 2025, 9, 101139. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Y.; Xu, G.; Liu, X.; Zeng, X.; Wei, K. Effect of post-weld induction heat treatment on single-pass high-power laser-arc hybrid welded thick stainless steel clad plate: Microstructure, mechanical properties and corrosion resistance. J. Mater. Res. Technol. 2025, 38, 2623–2635. [Google Scholar] [CrossRef]
- ISO 5817:2023; Welding-Fusion-Weld Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded)-Quality Levels for Imperfectins. ISO: Geneva, Switzerland, 2014.
- Shirinzadeh-Dastgiri, M.; Mohammadi, J.; Behnamian, Y.; Eghlimi, A.; Mostafaei, A. Metallurgical investigations and corrosion behavior of failed weld joint in AISI 1518 low carbon steel pipeline. Eng. Fail. Anal. 2015, 53, 78–96. [Google Scholar] [CrossRef]
- Han, Q.H.; Wang, X.; Lu, Y. Experimental investigation on the corrosion behavior of G20Mn5QT cast steel and butt weld with Q345D steel. Corros. Sci. 2018, 132, 194–203. [Google Scholar] [CrossRef]
- Dou, X.; He, Z.; Zhang, X.; Liu, Y.; Liu, R.; Tan, Z.; Zhang, D.; Li, Y. Corrosion behavior and mechanism of X80 pipeline steel welded joints under high shear flow fields. Colloids Surf. A Physicochem. Eng. Asp. 2023, 665, 131225. [Google Scholar] [CrossRef]
- Chen, G.; Ju, N.; Yan, T.; Liu, Y.; Xia, J.; Zhang, R.; Zhu, Q. The influence of post-weld heat treatment on the corrosion resistance of CLAM steel weld bead in flowing LBE at 550 °C. Nucl. Eng. Des. 2025, 444, 114418. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, D.; Fan, H.; Fu, X.; Yan, R.; Wei, Z.; Wu, H. In-situ electrochemical testing and fluid dynamics simulation of pipeline defects under flow accelerated corrosion. Exp. Therm. Fluid Sci. 2024, 150, 111048. [Google Scholar] [CrossRef]
- Barker, R.; Hu, X.; Neville, A. The influence of high shear and sand impingement on preferential weld corrosion of carbon steel pipework in CO2-saturated environments. Tribol. Int. 2013, 68, 17–25. [Google Scholar] [CrossRef]
- Ramesh, N.R.; Kumar, V.S.S. Experimental erosion-corrosion analysis of friction stir welding of AA 5083 and AA 6061 for sub-sea applications. Appl. Ocean Res. 2020, 98, 102121. [Google Scholar] [CrossRef]
- Dou, X.; Xiang, W.; Li, B.; Ju, M.; Li, A.; Zhang, D.; Li, Y. CFD-DPM modelling of solid particle erosion on weld reinforcement height in liquid-solid high shear flows. Powder Technol. 2023, 427, 118773. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.B.; Qiao, Y.X.; Zheng, Y.G. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel. Corros. Sci. 2022, 199, 110210. [Google Scholar] [CrossRef]
- Ermakova, A.; Ganguly, S.; Razavi, N.; Berto, F.; Mehmanparast, A. Corrosion-fatigue crack growth behaviour of wire arc additively manufactured ER70S-6 steel parts in marine environments. Eur. J. Mech. A/Solids 2022, 96, 104739. [Google Scholar] [CrossRef]
- Song, Z.H.; Song, H.Y.; Liu, H.T. Effect of cooling route on microstructure and mechanical properties of twin-roll casting low carbon steels with an application of oxide metallurgy technology. Mater. Sci. Eng. A 2021, 800, 140282. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochimica Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films II. J. Electrochem. Soc. 2010, 157, C458. [Google Scholar] [CrossRef]
- Pang, L.; Wang, Z.B.; Lu, M.H.; Lu, Y.; Liu, X.; Zheng, Y.G. Inhibition performance of benzimidazole derivatives with different heteroatoms on the under-deposit corrosion of carbon steel in CO2-saturated solution. Corros. Sci. 2021, 192, 109841. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, M.Y. Visualising the dynamic processes of flow accelerated corrosion and erosion corrosion using an electrochemically integrated electrode array. Corros. Sci. 2018, 139, 438–443. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Li, Y.Y.; Zhang, G.A. Interaction between crevice and galvanic corrosion of X65 carbon steel in the CO2-saturated NaCl solution under the coupling of crevice and galvanic effects. J. Electroanal. Chem. 2022, 918, 116482. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, L.; Tan, Z.; Xing, S.; Bai, S.; Wei, E.; Tang, X.; Jin, Y. Corrosion behavior of X65 steel at different depths of pitting defects under local flow conditions. Exp. Therm. Fluid Sci. 2021, 124, 110333. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Xing, X.; He, S.; Zhang, L.; Lu, M. Effects of flow velocity on the corrosion behaviour of super 13Cr stainless steel in ultra-HTHP CO2-H2S coexistence environment. Corros. Sci. 2022, 200, 110235. [Google Scholar] [CrossRef]
- Zhong, X.; Shang, T.; Zhang, C.; Hu, J.; Zhang, Z.; Zhang, Q.; Yuan, X.; Hou, D.; Zeng, D.; Shi, T. In situ study of flow accelerated corrosion and its mitigation at different locations of a gradual contraction of N80 steel. J. Alloys Compd. 2020, 824, 153947. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, D.; Yang, L.; Wang, Z.; Cheng, F.; Zhang, M.; Jin, Y.; Zhu, S. Development mechanism of local corrosion pit in X80 pipeline steel under flow conditions. Tribol. Int. 2020, 146, 106145. [Google Scholar] [CrossRef]
- Jiang, S.; Chai, F.; Su, H.; Yang, C. Influence of chromium on the flow-accelerated corrosion behavior of low alloy steels in 3.5% NaCl solution. Corros. Sci. 2017, 123, 217–227. [Google Scholar] [CrossRef]
- Gu, Y.; Lu, N.; Xu, Y.; Shi, Y.; Zhang, G.; Sun, Q. Microstructure characteristics of Q345R-steel welded joints and their corrosion behavior in a hydrofluoric acid environment. J. Nucl. Mater. 2023, 574, 154214. [Google Scholar] [CrossRef]
- Hu, Y.; Xin, L.; Hong, C.; Han, Y.; Lu, Y. Microstructural understanding of flow accelerated corrosion of SA106B carbon steel in high-temperature water with different flow velocities. Materials 2023, 16, 3981. [Google Scholar] [CrossRef] [PubMed]
Materials | C | Si | Mn | P | S | Cr | Fe |
---|---|---|---|---|---|---|---|
SA106 B | 0.210 | 0.26 | 0.67 | 0.020 | 0.011 | 0.36 | Bal. |
ER70S-6 | 0.065 | 0.91 | 1.65 | 0.012 | 0.008 | – | Bal. |
Flow Velocity (m/s) | Welded Joints | Rs (Ω cm2) | Rf (Ω cm2) | Qf·10−4 (F cm−2) | n1 | Rct (Ω cm2) | Qdl·10−4 (F cm−2) | n2 | χ2·10−4 |
---|---|---|---|---|---|---|---|---|---|
0.5 | Flat weld | 2.41 ± 0.02 | 4.54 ± 1.36 | 8.14 ± 2.59 | 0.78 | 93.15 ± 5.54 | 11.7 ± 4.55 | 0.68 | 4.12 |
Convex weld | 2.42 ± 0.07 | 7.71 ± 1.40 | 6.13 ± 2.88 | 0.81 | 81.73 ± 4.69 | 6.41 ± 3.75 | 0.72 | 5.40 | |
1.2 | Flat weld | 2.35 ± 0.03 | 11.67 ± 1.36 | 15.10 ± 2.33 | 0.73 | 80.23 ± 1.38 | 13.9 ± 0.55 | 0.64 | 3.58 |
Convex weld | 2.44 ± 0.06 | 9.96 ± 1.38 | 7.65 ± 0.89 | 0.78 | 69.03 ± 0.63 | 5.66 ± 0.17 | 0.75 | 3.66 | |
3.2 | Flat weld | 2.28 ± 0.02 | 11.52 ± 1.15 | 19.40 ± 1.04 | 0.78 | 65.58 ± 0.01 | 2.09 ± 0.55 | 0.91 | 6.06 |
Convex weld | 1.84 ± 0.01 | 8.07 ± 0.61 | 26.30 ± 2.79 | 0.75 | 48.51 ± 0.73 | 12.50 ± 1.01 | 0.69 | 9.29 | |
6.9 | Flat weld | 2.04 ± 0.02 | 13.19 ± 0.33 | 25.90 ± 5.53 | 0.69 | 26.95 ± 1.69 | 5.15 ± 0.16 | 0.89 | 2.69 |
Convex weld | 1.78 ± 0.01 | 0.93 ± 0.14 | 2.77 ± 0.04 | 0.97 | 20.80 ± 0.07 | 53.10 ± 0.12 | 0.67 | 6.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Ma, Y.; Hu, H.; Wang, Z.; Zheng, Y.; Ma, N.; Zhang, P.; Yang, C. Influence of Microstructure and Geometric Discontinuity Introduced by Weld Reinforcement Height on the Corrosion Behavior of SA106B Welded Joints in a Flowing Solution. Metals 2025, 15, 1083. https://doi.org/10.3390/met15101083
Zheng K, Ma Y, Hu H, Wang Z, Zheng Y, Ma N, Zhang P, Yang C. Influence of Microstructure and Geometric Discontinuity Introduced by Weld Reinforcement Height on the Corrosion Behavior of SA106B Welded Joints in a Flowing Solution. Metals. 2025; 15(10):1083. https://doi.org/10.3390/met15101083
Chicago/Turabian StyleZheng, Kexin, Yongjian Ma, Hongxiang Hu, Zhengbin Wang, Yugui Zheng, Ning Ma, Peng Zhang, and Chunguang Yang. 2025. "Influence of Microstructure and Geometric Discontinuity Introduced by Weld Reinforcement Height on the Corrosion Behavior of SA106B Welded Joints in a Flowing Solution" Metals 15, no. 10: 1083. https://doi.org/10.3390/met15101083
APA StyleZheng, K., Ma, Y., Hu, H., Wang, Z., Zheng, Y., Ma, N., Zhang, P., & Yang, C. (2025). Influence of Microstructure and Geometric Discontinuity Introduced by Weld Reinforcement Height on the Corrosion Behavior of SA106B Welded Joints in a Flowing Solution. Metals, 15(10), 1083. https://doi.org/10.3390/met15101083