Specific Features of Using High-Silica Flux Ore in Copper Smelting Units
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spiryagin, V.V.; Kravchenko, I.N.; Kuznetsov, Y.A.; Spiryagin, V.V. Review of international experience in substantiating the technology of smelting copper sulfide-containing concentrates taking into account the criteria of efficiency, cost-effectiveness, and environmental friendliness. Surf. Eng. Appl. Electrochem. 2025, 61, 192–201. [Google Scholar] [CrossRef]
- Paretsky, V.M.; Tarasov, A.V. Effect of composition on copper losses in autogenous smelting. In Proceedings of the International Conference, Santiago, Chile, 30 November–3 December 2003. [Google Scholar]
- Kenzhaliyev, B.K.; Kvyatkovskiy, S.A.; Dyussebekova, M.A.; Semenova, A.S.; Nurhadiyanto, D. Analysis of existing technologies for depletion of dump slags of autogenous melting. Kompleks. Ispolz. Miner. Syra Complex Use Miner. Resour. 2022, 323, 23–29. [Google Scholar] [CrossRef]
- Ramachandran, V.; Diaz, C.; Eltringham, T. Primary Copper Production—A Survey of Operating World Copper Smelters. In Proceedings of the Copper 03–Cobre 03 International Conference, Santiago, Chile, 30 November–3 December 2003. [Google Scholar]
- Goonan, T.G. Flows of Selected Materials Associated with World Copper Smelting; Open-File Report 2004–1395; U.S. Geological Survey: Reston, VA, USA, 2004; p. 132.
- Kapusta, J.P. JOM world nonferrous smelters survey, part I: Copper. JOM 2004, 56, 21–27. [Google Scholar] [CrossRef]
- Flores, G.A.; Risopatron, C.; Pease, J. Processing of Complex Materials in the Copper Industry: Challenges and Opportunities Ahead: Flores, Risopatron, and Pease. Jom 2020, 72, 3447–3461. [Google Scholar] [CrossRef]
- Dosmukhamedov, N.; Zholdasbay, E.; Argyn, A.; Icheva, Y.; Kurmanseitov, M. Enlarged tests on the processing of copper-lead mattes obtained after reductive smelting of balanced feed charge. Kompleks. Ispolz. Miner. Syra Complex Use Miner. Resour. 2025, 337, 75–84. [Google Scholar] [CrossRef]
- Yakubov, M.; Yoqubov, M.; Kholikulov, D.; Maksudhodjaeva, M. Depletion of converter slags to waste in the Vanyukov furnace during pyrometallurgical copper production at JSC Almalyk MMC. Kompleks. Ispolz. Miner. Syra Complex Use Miner. Resour. 2024, 331, 60–68. [Google Scholar] [CrossRef]
- Grechko, A.V.; Tarasov, A.V.; Kalnin, E.I. Domestic experience in processing sulphide raw materials into white matte or black copper. Non-Ferr. Met. 1998, 8–9, 12–18. [Google Scholar]
- Ospanov, Y.A.; Kvyatkovskiy, S.A.; Kozhakhmetov, S.M.; Sokolovskaya, L.V.; Semenova, A.S.; Dyussebekova, M.; Shakhalov, A.A. Slag heterogeneity of autogenous copper concentrates smelting. Can. Metall. Q. 2023, 62, 594–601. [Google Scholar] [CrossRef]
- Dyussebekova, M.; Kenzhaliyev, B.; Kvyatkovskiy, S.; Kozhakhmetov, S.; Semenova, A.; Sukurov, B. Study of the effect of fluxing ability of flux ores on minimizing of copper losses with slags during copper concentrate smelting. Metals 2022, 12, 1240. [Google Scholar] [CrossRef]
- Montillo, I.A.; Vetrenko, E.A. On acceleration of the process of assimilation of quartz fluxes during conversion. In Proceedings of the Conference on the Issues of Converting Copper Mattes, Revda, Russia; 1968; pp. 58–61. [Google Scholar]
- Montillo, I.A.; Shin, S.N. On the dissolution of quartz in oxidized and oxide-sulfide melts. Non-Ferr. Met. 1969, 1, 44–46. [Google Scholar]
- Tarasov, A.V.; Grechko, A.V. Obtaining white matte and blister copper during continuous smelting of sulfide raw materials in a Vanyukov furnace. Metals 2000, 1, 20–24. [Google Scholar]
- Johnson, R.E.; Themelis, N.J.; Eltringham, G.A. A world-wide survey of copper converting practice. JOM 1979, 31, 28–36. [Google Scholar] [CrossRef]
- Coursol, P.; Valencia, N.; Mackey, P.; Bell, S.; Davis, B. Minimization of copper losses in copper smelting slag during electric furnace treatment. JOM 2012, 64, 1305–1313. [Google Scholar] [CrossRef]
- Moskalyk, R.R.; Alfantazi, A.M. Review of copper pyrometallurgical practice: Today and tomorrow. Miner. Eng. 2003, 16, 893–919. [Google Scholar] [CrossRef]
- Montillo, I.A.; Mysik, R.K.; Nazarova, T.A. The role of interfacial tension dynamics in the formation of metal, matte and slag in copper production. Non-Ferr. Met. 1973, 2, 20–22. [Google Scholar]
- Somerville, M.; Chen, C.; Alvear, F.G.R.; Nikolic, S. Fluxing strategies for the direct to blister smelting of high silica and low iron copper concentrates. In Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, Seattle, WA, USA, 22–25 May 2016; Springer: Cham, Switzerland, 2016; pp. 667–675. [Google Scholar]
- Zaitsev, V.Y.; Vanyukov, A.V.; Vorobyov, V.A. Slag formation during matte conversion. Non-Ferr. Met. 1971, 10, 20–24. [Google Scholar]
- Montillo, I.A.; Pazdnikov, I.P. On the forms of existence of alumina in melts of the FeO–SiO2–Al2O3 system. Russ. J. Phys. Chem. 1965, 39, 993–996. [Google Scholar]
- Ransky, O.B.; Chernigova, A.E.; Antonenko, V.I. Study of the influence of Al2O3 on the equilibrium distribution of impurities between copper and slag melt. Non-Ferr. Met. 1992, 3, 18–20. [Google Scholar]
- Alimbaev, G.I.; Vetrenko, E.A.; Montillo, I.A. The influence of limestone on the process of slag formation during matte conversion. Non-Ferr. Met. 1971, 10, 20–24. [Google Scholar]
- Kenzhaliyev, B.; Imankulov, T.; Mukhanbet, A.; Kvyatkovskiy, S.; Dyussebekova, M.; Tasmurzayev, N. Intelligent system for reducing waste and enhancing efficiency in copper production using machine learning. Metals 2025, 15, 186. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, S.; Blanpain, B.; Guo, M. Solidification behavior of the FeOt-SiO2-CaO-Al2O3-(ZnO) slag system. Ceram. Int. 2024, 50, 25792–25800. [Google Scholar] [CrossRef]
- Nekhoroshev, E.; Cheng, S.; Shevchenko, M.; Shishin, D.; Jak, E. Reoptimization of the CaO–FeO–Fe2O3–SiO2 system integrated with EPMA studies (part I—Experimental results). J. Am. Ceram. Soc. 2025, 108, e20617. [Google Scholar] [CrossRef]
- Andersson, A.; Isaksson, J.; Lennartsson, A.; Roos, Å.; Engström, F. The Role of FeO/SiO2 Ratio in Valorizing Iron Silicate Slags as Supplementary Cementitious Materials. J. Sustain. Metall. 2025, 11, 657–669. [Google Scholar] [CrossRef]
- Liu, J.; Xie, H.; Han, B. The Utilization of the Copper Smelting Slag: A Critical Review. Minerals 2025, 15, 926. [Google Scholar] [CrossRef]
- Hidayat, T.; Shishin, D.; Decterov, S.A.; Jak, E. Experimental study and thermodynamic re-optimization of the FeO–Fe2O3–SiO2 system. J. Phase Equilibria Diffus. 2017, 38, 477–492. [Google Scholar] [CrossRef]
Name | Chemical Composition of Flux Ores, % | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Cu | Pb | CaO | Fe | Al2O3 | Zn | S | |
Ordinary ore | 64.20 | 0.59 | 0.10 | 4.30 | 2.45 | 11.3 | 0.07 | 0.21 |
High silica ore, reverberatory furnace class | 96.90 | 0.02 | <0.01 | 0.92 | 1.49 | 0.35 | <0.01 | 0.02 |
High silica ore, converter class | 95.90 | 0.09 | <0.01 | 1.17 | 1.07 | 0.29 | 0.01 | 0.05 |
Stage | Converter Slag Temperature, °C | Temperature of Waste Furnace Slag, °C |
---|---|---|
1 | 1124 | 1285 |
2 | 1167 | 1344 |
3 | 1174 | 1409 |
Test Stages | Cu | SiO2 | Fetotal | CaO | Pb |
---|---|---|---|---|---|
1 | 10.05 | 23.79 | 22.37 | 2.06 | 12.8 |
2 | 4.49 | 25.73 | 26.10 | 0.96 | 11.97 |
3 | 4.42 | 31.04 | 27.44 | 1.74 | 10.11 |
Test Stages | Cu | SiO2 | Fe | CaO | Pb |
---|---|---|---|---|---|
1 | 1.22 | 44.57 | 14.99 | 6.5 | 3.64 |
2 | 1.00 | 50.49 | 15.65 | 7.05 | 2.83 |
3 | 0.88 | 48.35 | 15.97 | 7.46 | 2.74 |
Point No. | S | Fe | Cu | Pb | O | Na | Mg | Al | Si | Ca | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 24.92 | 7.85 | 67.23 | - | - | - | - | - | - | - | - |
2 | 24.71 | 7.34 | 67.95 | - | - | - | - | - | - | - | - |
3 | 24.47 | 5.47 | 70.07 | - | - | - | - | - | - | - | - |
4 | 15.34 | 3.25 | 30.43 | 43.00 | - | - | - | - | - | - | - |
16.76 | 3.51 | 32.75 | 46.98 | - | - | - | - | - | - | - | |
5 | - | 17.20 | - | 4.24 | 43.53 | 2.29 | 0.99 | 4.16 | 20.04 | 3.93 | 0.35 |
Point No. | S | Fe | Cu | Pb | O | Na | Mg | Al | Si | Ca |
---|---|---|---|---|---|---|---|---|---|---|
1 | 18.65 | 2.88 | 48.00 | 30.47 | - | - | - | - | - | - |
16.56 | 2.59 | 43.54 | 27.07 | - | - | - | - | - | - | |
2 | 22.82 | - | 77.18 | - | - | - | - | - | - | - |
3 | - | 17.18 | 0.77 | 4.47 | 43.11 | 1.33 | 1.57 | 4.13 | 20.38 | 4.65 |
4 | - | 15.72 | 0.57 | 12.83 | 38.07 | 2.15 | 0.62 | 4.09 | 19.04 | 3.48 |
5 | - | 17.56 | - | 5.32 | 42.94 | 2.13 | 1.00 | 4.07 | 19.91 | 4.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenzhaliyev, B.; Kvyatkovskiy, S.; Kozhakhmetov, S.; Sukurov, B.; Dyussebekova, M.; Semenova, A. Specific Features of Using High-Silica Flux Ore in Copper Smelting Units. Metals 2025, 15, 1070. https://doi.org/10.3390/met15101070
Kenzhaliyev B, Kvyatkovskiy S, Kozhakhmetov S, Sukurov B, Dyussebekova M, Semenova A. Specific Features of Using High-Silica Flux Ore in Copper Smelting Units. Metals. 2025; 15(10):1070. https://doi.org/10.3390/met15101070
Chicago/Turabian StyleKenzhaliyev, Bagdaulet, Sergey Kvyatkovskiy, Sultanbek Kozhakhmetov, Bulat Sukurov, Maral Dyussebekova, and Anastassiya Semenova. 2025. "Specific Features of Using High-Silica Flux Ore in Copper Smelting Units" Metals 15, no. 10: 1070. https://doi.org/10.3390/met15101070
APA StyleKenzhaliyev, B., Kvyatkovskiy, S., Kozhakhmetov, S., Sukurov, B., Dyussebekova, M., & Semenova, A. (2025). Specific Features of Using High-Silica Flux Ore in Copper Smelting Units. Metals, 15(10), 1070. https://doi.org/10.3390/met15101070