A Study of the Corrosion Behavior of AHSS Complex-Phase CP 780 Employing an Electrochemical Noise Technique Analyzed by Different Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microstructural Characterization
2.3. Electrochemical Characterization
3. Results
3.1. Microstructure
3.2. Electrochemical Noise
3.2.1. Time-Domain Analysis
3.2.2. Power Spectral Density and Noise Impedance
3.2.3. Wavelets Analysis
3.2.4. Hilbert–Huang Transform and Recurrence Plot Analysis
4. Discussion
5. Conclusions
- The E-coat increases corrosion resistance of CP780 by more than 1000 times (9.31 × 102, 7.84 × 102 Ω·cm2 vs. 94.85 × 104, 25.82 × 105 Ω·cm2).
- Phosphate pretreatment increases corrosion resistance from 784 to 1979 Ω·cm2; however, it does not reduce the galvanic cell that produces CP780 corrosion.
- The corrosion mechanism of CP780 is the galvanic couple, due to the different phases that have, principally, the bainite, which acts as an anode, so that the corrosion process begins as a localized attack (pitting), and converts after some time to a uniform corrosion process across the surface.
- The E-coat significantly increases the corrosion resistance of CP780; however, the coating is irregular, so the results obtained by Wavelets, HHT, and RP showed a predominance of localized attacks on the surface.
- Analyzing EN signal methods such as Wavelets, HHT, and RP is recommended to determine the corrosion type and mechanism. Also, Zn0 is a good indicator of the corrosion resistance of materials.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gould, J.E.; Khurana, S.P.; Li, T. Predictions of Microstructures When Welding Automotive Advanced High-Strength Steels. Weld. J. 2006, 85, 111. [Google Scholar]
- Liang, X.; Wang, Y.; Chen, Y.; Deng, S. Advances in Emission Regulations and Emission Control Technologies for Internal Combustion Engines. SAE Int. J. Sustain. Transp. Energy Environ. Policy 2021, 2, 101–119. [Google Scholar] [CrossRef]
- Lopez-Cortez, V.H.; Reyes-Valdes, F.A. Undefined Understanding Resistance Spot Welding of Advanced High-Strength Steels. Weld. J. 2008, 87, 36–40. [Google Scholar]
- Escalona Gómez, A.; Delgado Espino, M.; Lara-Banda, M.d.R.; Almeraya Calderón, F. Electrochemical Characterization of Advanced High Strength Steel DP 780 MPa. Miner. Met. Mater. Ser. 2020, 149, 571–580. [Google Scholar] [CrossRef]
- Castillo Gutiérrez, D.E.; Angarita Moncaleano, I.I.; Rodríguez Baracaldo, R.; Castillo Gutiérrez, D.E.; Angarita Moncaleano, I.I.; Rodríguez Baracaldo, R. Caracterización Microestructural y Mecánica de Aceros de Fase Dual (Ferrita-Martensita), Obtenidos Mediante Procesos Térmicos y Termomecánicos. Ingeniare. Rev. Chil. Ing. 2018, 26, 430–439. [Google Scholar] [CrossRef]
- Romero-Orozco, A.J.; Taha-Tijerina, J.J.; Luna-Alanís, R.; De López-Morelos, V.H.; Ramírez-López, M.D.C.; Salazar-Martínez, M.; Curiel-López, F.F. Evaluation of Microstructural and Mechanical Behavior of AHSS CP780 Steel Welded by GMAW-Pulsed and GMAW-Pulsed-Brazing Processes. Metals 2022, 12, 530. [Google Scholar] [CrossRef]
- Macdonald, J.R. Frequency Response of Unified Dielectric and Conductive Systems Involving an Exponential Distribution of Activation Energies. J. Appl. Phys. 1985, 58, 1955–1970. [Google Scholar] [CrossRef]
- Montoya-Rangel, M.; Garza-Montes-de-Oca, N.F.; Gaona-Tiburcio, C.; Almeraya-Calderón, F. Corrosion mechanism of advanced high strength dual-phase steels by electrochemical noise analysis in chloride solutions. Mater. Today Commun. 2023, 35, 105663. [Google Scholar] [CrossRef]
- Montoya-Rangel, M.; de Garza-Montes, O.N.; Gaona-Tiburcio, C.; Colás, R.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Chacón-Nava, J.; Almeraya-Calderón, F. Electrochemical noise measurements of advanced high-strength steels in different solutions. Metals 2020, 10, 1232. [Google Scholar] [CrossRef]
- Almeraya-Calderón, F.; Montoya-Rangel, M.; Nieves-Mendoza, D.; Jáquez-Muñoz, J.M.; Baltazar-Zamora, M.A.; Landa-Ruiz, L.; Lara-Banda, M.; Maldonado-Bandala, E.; Estupiñan-Lopez, F.; Gaona-Tiburcio, C. Frequency–Time Domain Analysis Based on Electrochemical Noise of Dual-Phase (DP) and Ferrite–Bainite (FB) Steels in Chloride Solutions for Automotive Applications. Metals 2024, 14, 1208. [Google Scholar] [CrossRef]
- Koch, G. Cost of Corrosion. In Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission; Woodhead Publishing: Cambridge, UK, 2017; pp. 3–30. ISBN 9780081012192. [Google Scholar]
- Virmani, P. Corrosion Cost and Preventive Strategies in the United States, Publication No. FHWA-RD-01-156; Federal Highway Administration: Washington, DC, USA, 2002. [Google Scholar]
- Bachert, J.; Rahman, A.H.M.E.; Abu-Ayyad, M. Anti-Corrosive Coating Using Recycled High Density Polyethylene for Automotive Chassis. ASME Int. Mech. Eng. Congr. Expo. Proc. 2019, 12, V012T11A015. [Google Scholar] [CrossRef]
- Asundi, A.; Choi, A.Y.N. Fiber Metal Laminates: An Advanced Material for Future Aircraft. J. Mater. Process. Technol. 1997, 63, 384–394. [Google Scholar] [CrossRef]
- Shi, X.; Fay, L.; Yang, Z.; Nguyen, T.A.; Liu, Y. Corrosion of Deicers to Metals in Transportation Infrastructure: Introduction and Recent Developments. Corros. Rev. 2009, 27, 23–52. [Google Scholar] [CrossRef]
- Duarte, T.; Meyer, Y.A.; Osório, W.R. The Holes of Zn Phosphate and Hot Dip Galvanizing on Electrochemical Behaviors of Multi-Coatings on Steel Substrates. Metals 2022, 12, 863. [Google Scholar] [CrossRef]
- Ghanbari, A.; Attar, M.M. Surface Free Energy Characterization and Adhesion Performance of Mild Steel Treated Based on Zirconium Conversion Coating: A Comparative Study. Surf. Coat. Technol. 2014, 246, 26–33. [Google Scholar] [CrossRef]
- Tegehall, P.E.; Vannerberg, N.G. Nucleation and Formation of Zinc Phosphate Conversion Coating on Cold-Rolled Steel. Corros. Sci. 1991, 32, 635–652. [Google Scholar] [CrossRef]
- Vakili, H.; Ramezanzadeh, B.; Amini, R. The Corrosion Performance and Adhesion Properties of the Epoxy Coating Applied on the Steel Substrates Treated by Cerium-Based Conversion Coatings. Corros. Sci. 2015, 94, 466–475. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Wang, H.; Xie, Y.; Sheng, X.; Zhong, L.; Zhang, X. Accelerated Formation of Zinc Phosphate Coatings with Enhanced Corrosion Resistance on Carbon Steel by Introducing α-Zirconium Phosphate. J. Alloys Compd. 2020, 831, 154906. [Google Scholar] [CrossRef]
- Arthanareeswari, M.; Kamaraj, P.; Tamilselvi, M.; Devikala, S. A Low Temperature Nano TiO2 Incorporated Nano Zinc Phosphate Coating on Mild Steel with Enhanced Corrosion Resistance. Mater. Today Proc. 2018, 5, 9012–9025. [Google Scholar] [CrossRef]
- Reichinger, M.; Bremser, W.; Dornbusch, M. Interface and Volume Transport on Technical Cataphoretic Painting: A Comparison of Steel, Hot-Dip Galvanised Steel and Aluminium Alloy. Electrochim. Acta 2017, 231, 135–152. [Google Scholar] [CrossRef]
- Dehri, I.; Erbil, M. The Effect of Relative Humidity on the Atmospheric Corrosion of Defective Organic Coating Materials: An EIS Study with a New Approach. Corros. Sci. 2000, 42, 969–978. [Google Scholar] [CrossRef]
- Deflorian, F.; Fedrizzi, L.; Rossi, S.; Buratti, F.; Bonora, P.L. Electrochemical Characterisation of Organic Coatings for the Automotive Industry. Prog. Org. Coat. 2000, 39, 9–13. [Google Scholar] [CrossRef]
- Suay, J.J.; Rodríguez, M.T.; Razzaq, K.A.; Carpio, J.J.; Saura, J.J. The Evaluation of Anticorrosive Automotive Epoxy Coatings by Means of Electrochemical Impedance Spectroscopy. Prog. Org. Coat. 2003, 46, 121–129. [Google Scholar] [CrossRef]
- Deflorian, F.; Rossi, S. An EIS Study of Ion Diffusion through Organic Coatings. Electrochim. Acta 2006, 51, 1736–1744. [Google Scholar] [CrossRef]
- Tiyyagura, H.R.; Kumari, S.; Mohan, M.K.; Pant, B.; Nageswara Rao, M. Degradation Behavior of Metastable β Ti-15-3 Alloy for Fastener Applications. J. Alloys Compd. 2019, 775, 518–523. [Google Scholar] [CrossRef]
- Shkirskiy, V.; King, A.D.; Gharbi, O.; Volovitch, P.; Scully, J.R.; Ogle, K.; Birbilis, N. Revisiting the Electrochemical Impedance Spectroscopy of Magnesium with Online Inductively Coupled Plasma Atomic Emission Spectroscopy. ChemPhysChem 2015, 16, 536–539. [Google Scholar] [CrossRef]
- Carley-Clopton, A.; Findley, K.O.; De Moor, E.; Comstock, R.J. Evaluation of Aging and Zn-Coating Effects on Sheared Edge Formability in Sheet Steels. Int. Symp. New Dev. Adv. High-Strength Sheet Steels AHSS 2023, 7, 86–95. [Google Scholar] [CrossRef]
- Scharf, R.; Muhr, A.; Stellnberger, K.H.; Faderl, J.; Holzer, C.; Mori, G. Hydrogen Embrittlement of High Strength Steel under in Situ Corrosive Charging Conditions and Tensile Load. Mater. Corros. 2017, 68, 95–104. [Google Scholar] [CrossRef]
- Wint, N.; Leung, J.; Sullivan, J.H.; Penney, D.J.; Gao, Y. The Galvanic Corrosion of Welded Ultra-High Strength Steels Used for Automotive Applications. Corros. Sci. 2018, 136, 366–373. [Google Scholar] [CrossRef]
- Meddings, N.; Heinrich, M.; Overney, F.; Lee, J.S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberšček, M.; et al. Application of Electrochemical Impedance Spectroscopy to Commercial Li-Ion Cells: A Review. J. Power Sources 2020, 480, 228742. [Google Scholar] [CrossRef]
- Venezuela, J.; Liu, Q.; Zhang, M.; Zhou, Q.; Atrens, A. A Review of Hydrogen Embrittlement of Martensitic Advanced High-Strength Steels. Corros. Rev. 2016, 34, 153–186. [Google Scholar] [CrossRef]
- Midea, S.J.; Pfaffmann, G.D. Heat Treating: Including Steel Heat Treating in the New Millennium: An International Symposium in Honor of Professor George Krauss, 1–4 November 1999: Proceedings of the 19th Conference. Available online: https://searchworks.stanford.edu/view/12930083 (accessed on 2 January 2025).
- Reyes, A.E.S.; Rodriguez, G.L.; Parra, J.R.G.; Lemus, V.H.M. Microstructural Characterization and Corrosion Behavior of Similar and Dissimilar Welded Advanced High-Strength Steels (AHSS) by Rotary Friction Welding. Materials 2024, 17, 918. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.; Raab, U.; Weber, S.; Theisen, W.; Wollmann, M.; Wagner, L. Influence of Heat Treatment on the Performance Characteristics of a Plastic Mold Steel. Steel Res. Int. 2011, 82, 1290–1296. [Google Scholar] [CrossRef]
- Dubent, S.; Mazard, A. Characterization and Corrosion Behaviour of Grade 2 Titanium Used in Electrolyzers for Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 15622–15633. [Google Scholar] [CrossRef]
- Franceschi, M.; Pezzato, L.; Settimi, A.G.; Gennari, C.; Pigato, M.; Polyakova, M.; Konstantinov, D.; Brunelli, K.; Dabalà, M. Effect of Different Austempering Heat Treatments on Corrosion Properties of High Silicon Steel. Materials 2021, 14, 288. [Google Scholar] [CrossRef] [PubMed]
- Prando, D.; Brenna, A.; Diamanti, M.V.; Beretta, S.; Bolzoni, F.; Ormellese, M.; Pedeferri, M.P. Corrosion of Titanium: Part 2: Effects of Surface Treatments. J. Appl. Biomater. Funct. Mater. 2018, 16, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, M.; Michalik, R. Studies on the Corrosion Properties of High-Mn Austenitic Steels. Solid State Phenom. 2015, 227, 75–78. [Google Scholar] [CrossRef]
- Bhadeshia, H.; Honeycombe, R. Steels: Microstructure and Properties; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Kuziak, R.; Kawalla, R.; Waengler, S. Advanced High Strength Steels for Automotive Industry. Arch. Civ. Mech. Eng. 2008, 8, 103–117. [Google Scholar] [CrossRef]
- Wei, J.; Dong, J.; Zhou, Y.; He, X.; Wang, C.; Ke, W. Influence of the Secondary Phase on Micro Galvanic Corrosion of Low Carbon Bainitic Steel in NaCl Solution. Mater. Charact. 2018, 139, 401–410. [Google Scholar] [CrossRef]
- Wang, Z.F.; Li, P.H.; Guan, Y.; Chen, Q.F.; Pu, S.K. The Corrosion Resistance of Ultra-Low Carbon Bainitic Steel. Corros. Sci. 2009, 51, 954–961. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Q.; Li, L.; Wu, Z.; Cao, F.; Gao, Z. Effect of Alloy Element on Corrosion Behavior of the Huge Crude Oil Storage Tank Steel in Seawater. J. Alloys Compd. 2014, 598, 198–204. [Google Scholar] [CrossRef]
- Mansfeld, F. Models for the Impedance Behavior of Protective Coatings and Cases of Localized Corrosion. Electrochim. Acta 1993, 38, 1891–1897. [Google Scholar] [CrossRef]
- Silverman, D.C. Tutorial on Cyclic Potentiodynamic Polarization Technique. In Proceedings of the NACE—International Corrosion Conference Series, San Diego, CA, USA, 22–27 March 1998. [Google Scholar]
- Silverman, D.C. Practical Corrosion Prediction Using Electrochemical Techniques. In Uhlig’s Corrosion Handbook, 3rd ed.; Weily: Hoboken, NJ, USA, 2011; pp. 1129–1166. [Google Scholar] [CrossRef]
- Sanchez-Amaya, J.M.; Cottis, R.A.; Botana, F.J. Shot Noise and Statistical Parameters for the Estimation of Corrosion Mechanisms. Corros. Sci. 2005, 47, 3280–3299. [Google Scholar] [CrossRef]
- Bertocci, U.; Kruger, J. Studies of Passive Film Breakdown by Detection and Analysis of Electrochemical Noise. Surf. Sci. 1980, 101, 608–618. [Google Scholar] [CrossRef]
- Kearns, J.R.; Scully, J.R.; Roberge, P.R.; Reichert, D.L.; Dawson, J.L. Electrochemical Noise Measurement for Corrosion Applications; ASTM International: West Conshohocken, PA, USA, 2015; ISBN 080312032X. [Google Scholar]
- Eden, D.A. Electrochemical Noise—The First Two Octaves. In Proceedings of the NACE—International Corrosion Conference Series, San Diego, CA, USA, 22–27 March 1998. [Google Scholar]
- Eden, D.A.; Rothwell, A.N. Electrochemical Noise Data: Analysis, Interpretation and Presentation; Corrosion/92, Paper No. 292; NACE: Huoston, TX, USA, 1992; pp. 1–12. [Google Scholar]
- Bertocci, U.; Gabrielli, C.; Huet, F.; Keddam, M.; Rousseau, P. Noise Resistance Applied to Corrosion Measurements: II. Experimental Tests. J. Electrochem. Soc. 1997, 144, 37–43. [Google Scholar] [CrossRef]
- Reid, S.A.; Eden, D.A. Assessment of Corrosion. US9264824B1, 24 July 2001. [Google Scholar]
- Mansfeld, F.; Sun, Z.; Hsu, C.H.; Nagiub, A. Concerning Trend Removal in Electrochemical Noise Measurements. Corros. Sci. 2001, 43, 341–352. [Google Scholar] [CrossRef]
- Cottis, R.; Turgoose, S. Electrochemical Impedance and Noise; NACE International: Shanghai, China, 1999; p. 153. [Google Scholar]
- Mansfeld, F.; Sun, Z. Technical Note: Localization Index Obtained from Electrochemical Noise Analysis. Corrosion 1999, 55, 915–918. [Google Scholar] [CrossRef]
- Legat, A.; Dolecček, V. Corrosion Monitoring System Based on Measurement and Analysis of Electrochemical Noise. Corrosion 1995, 51, 295–300. [Google Scholar] [CrossRef]
- Uruchurtu, J.C.; Dawson, J.L. Noise Analysis of Pure Aluminum under Different Pitting Conditions. Corrosion 1987, 43, 19–26. [Google Scholar] [CrossRef]
- Bertocci, U.; Huet, F.; Nogueira, R.P.; Rousseau, P. Drift Removal Procedures in the Analysis of Electrochemical Noise. Corrosion 2002, 58, 337–347. [Google Scholar] [CrossRef]
- Homborg, A.M.; Tinga, T.; Van Westing, E.P.M.; Zhang, X.; Ferrari, G.M.; De Wit, J.H.W.; Mol, J.M.C. A Critical Appraisal of the Interpretation of Electrochemical Noise for Corrosion Studies. Corrosion 2014, 70, 971–987. [Google Scholar] [CrossRef]
- Bertocci, U.; Huet, F. Noise Analysis Applied to Electrochemical Systems. Corrosion 1995, 51, 131–144. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer Nature: Dordrecht, GX, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Homborg, A.M.; Oonincx, P.J.; Mol, J.M.C. Wavelet Transform Modulus Maxima and Holder Exponents Combined with Transient Detection for the Differentiation of Pitting Corrosion Using Electrochemical Noise. Corrosion 2018, 74, 1001–1010. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, Z.; Cao, F.; Gao, Z.; Zhang, J.; Cao, C. Analysis of Pitting Corrosion Behavior of Pure Al in Sodium Chloride Solution with the Wavelet Technique. J. Electroanal. Chem. 2005, 578, 143–150. [Google Scholar] [CrossRef]
- Homborg, A.M.; van Westing, E.P.M.; Tinga, T.; Zhang, X.; Oonincx, P.J.; Ferrari, G.M.; de Wit, J.H.W.; Mol, J.M.C. Novel Time–Frequency Characterization of Electrochemical Noise Data in Corrosion Studies Using Hilbert Spectra. Corros. Sci. 2013, 66, 97–110. [Google Scholar] [CrossRef]
- Garcia-Ochoa, E. Recurrence Plots: A New Methodology for Electrochemical Noise Signal Analysis. J. Electroanal. Chem. 2020, 864, 114092. [Google Scholar] [CrossRef]
- Marwan, N.; Carmen Romano, M.; Thiel, M.; Kurths, J. Recurrence Plots for the Analysis of Complex Systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Marwan, N.; Kraemer, K.H. Trends in Recurrence Analysis of Dynamical Systems. Eur. Phys. J. Spec. Top. 2023, 232, 5–27. [Google Scholar] [CrossRef]
- Arellano-Pérez, J.H.; Escobar-Jiménez, R.F.; Granados-Lieberman, D.; Gómez-Aguilar, J.F.; Uruchurtu-Chavarín, J.; Alvarado-Martínez, V.M. Electrochemical Noise Signals Evaluation to Classify the Type of Corrosion Using Synchrosqueezing Transform. J. Electroanal. Chem. 2019, 848, 113249. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Q.; Yang, X.; Wang, J. A Novel Method for Identifying Corrosion Types and Transitions Based on Adaboost and Electrochemical Noise. Anti-Corros. Methods Mater. 2023, 70, 78–85. [Google Scholar] [CrossRef]
- Ye, Z.; Guan, L.; Li, Y.; Zhong, J.; Liao, L.; Xia, D.; Huang, J. Understanding the Galvanic Corrosion of Cu-Ni Alloy/2205 DSS Couple Using Electrochemical Noise and Microelectrochemical Studies. Corros. Sci. 2023, 224, 111512. [Google Scholar] [CrossRef]
- ASTM E3-95; Standard Practice for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM G199-09; Standard Guide for Electrochemical Noise Measurement. ASTM International: West Conshohocken, PA, USA, 2014.
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Méndez-Ramírez, C.T.; Baltazar-Zamora, M.Á.; Estupinán-López, F.; Bautista-Margulis, R.G.; Cuevas-Rodríguez, J.; Flores-De los Rios, J.P.; Almeraya-Calderón, F. Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques. Metals 2023, 13, 476. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Méndez-Ramírez, C.T.; Martínez-Ramos, C.; Baltazar-Zamora, M.A.; Santiago-Hurtado, G.; Estupinan-Lopez, F.; Landa-Ruiz, L.; Nieves-Mendoza, D.; Almeraya-Calderon, F. Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials. Materials 2024, 17, 4013. [Google Scholar] [CrossRef]
- Almeraya-Calderon, F.; Villegas-Tovar, M.; Maldonado-Bandala, E.; Lara-Banda, M.; Baltazar-Zamora, M.A.; Santiago-Hurtado, G.; Nieves-Mendoza, D.; Lopez-Leon, L.D.; Jaquez-Muñoz, J.M.; Estupiñán-López, F.; et al. Use of Electrochemical Noise for the Study of Corrosion by Passivated CUSTOM 450 and AM 350 Stainless Steels. Metals 2024, 14, 341. [Google Scholar] [CrossRef]
- Enestam, S.; Bankiewicz, D.; Tuiremo, J.; Mäkelä, K.; Hupa, M. Are NaCl and KCl Equally Corrosive on Superheater Materials of Steam Boilers? Fuel 2013, 104, 294–306. [Google Scholar] [CrossRef]
- Marcus, P. (Ed.) Corrosion Mechanisms in Theory and Practice, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Shi, Y.Y.; Zhang, Z.; Cao, F.H.; Zhang, J.Q. Dimensional Analysis Applied to Pitting Corrosion Measurements. Electrochim. Acta 2008, 53, 2688–2698. [Google Scholar] [CrossRef]
- Shibaeva, T.V.; Laurinavichyute, V.K.; Tsirlina, G.A.; Arsenkin, A.M.; Grigorovich, K.V. The Effect of Microstructure and Non-Metallic Inclusions on Corrosion Behavior of Low Carbon Steel in Chloride Containing Solutions. Corros. Sci. 2014, 80, 299–308. [Google Scholar] [CrossRef]
- Cottis, R.A.; Homborg, A.M.; Mol, J.M.C. The Relationship between Spectral and Wavelet Techniques for Noise Analysis. Electrochim. Acta 2016, 202, 277–287. [Google Scholar] [CrossRef]
- Suresh, G.; Mudali, U.K. Electrochemical Noise Analysis of Pitting Corrosion of Type 304L Stainless Steel. Corrosion 2014, 70, 283–293. [Google Scholar] [CrossRef]
- Cappeln, F.; Bjerrum, N.J.; Petrushina, I.M. Electrochemical Noise Measurements of Steel Corrosion in the Molten NaCl-K2SO4 System. J. Electrochem. Soc. 2005, 152, B228. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Olguín-Coca, J.; Estupinán-López, F.; López-León, L.D.; Chacón-Nava, J.; Almeraya-Calderón, F. Frequency Analysis of Transients in Electrochemical Noise of Superalloys Waspaloy and Ultimet. Metals 2021, 11, 702. [Google Scholar] [CrossRef]
- Ortíz-Corona, J.; Uruchurtu-Chavarin, J.; García-Ochoa, E.M.; González-Sánchez, J.A.; Larios-Duran, E.R.; Rodríguez-Gómez, F.J. Monitoring of Silver Alloy Tarnishing in Sulphides by Electrochemical Noise Measurements: Application of Statistical and Recurrence Plot Analysis. Electrochim. Acta 2024, 495, 144388. [Google Scholar] [CrossRef]
- Luo, B.; Wei, Q.; Hu, S.; Manoach, E.; Deng, T.; Cao, M. A Novel Cross-Domain Identification Method for Bridge Damage Based on Recurrence Plot and Convolutional Neural Networks. J. Vibroeng. 2024, 26, 1040–1061. [Google Scholar] [CrossRef]
- Calabrese, L.; Galeano, M.; Proverbio, E. Identifying Corrosion Forms on Synthetic Electrochemical Noise Signals by the Hilbert–Huang Transform Method. Corros. Eng. Sci. Technol. 2018, 53, 492–501. [Google Scholar] [CrossRef]
- Lin, R.L.; Li, W.Y.; Li, L.; Liao, C.J. High-Dissolution Mechanism of Ti–48Al–2Cr–2Nb Alloy in Electrochemical Machining from a Nonlinear Dynamic Perspective. Adv. Eng. Mater. 2024, 26, 2302083. [Google Scholar] [CrossRef]
- Martínez-Villafañe, A.; Almeraya-Calderón, F.; Gaona-Tiburcio, C.; Gonzalez-Rodriguez, J.; Porcayo-Calderón, J. High-Temperature Degradation and Protection of Ferritic and Austenitic Steels in Steam Generators. J. Mater. Eng. Perform. 1998, 7, 108–113. [Google Scholar] [CrossRef]
- Martínez-Ramos, C.; Olguin-Coca, J.; Lopez-Leon, L.D.; Gaona-Tiburcio, C.; Lara-Banda, M.; Maldonado-Bandala, E.; Castañeda-Robles, I.; Jaquez-Muñoz, J.M.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; et al. Electrochemical Noise Analysis Using Experimental Chaos Theory, Power Spectral Density and Hilbert–Huang Transform in Anodized Aluminum Alloys in Tartaric–Phosphoric–Sulfuric Acid Solutions. Metals 2023, 13, 1850. [Google Scholar] [CrossRef]
- Kalhor, A.; Soleimani, M.; Mirzadeh, H.; Uthaisangsuk, V. A Review of Recent Progress in Mechanical and Corrosion Properties of Dual Phase Steels. Arch. Civ. Mech. Eng. 2020, 20, 85. [Google Scholar] [CrossRef]
- Seifert, M.; Wieskämper, D.; Tonfeld, T.; Huth, S. Corrosion Properties of a Complex Multi-Phase Martensitic Stainless Steel Depending on the Tempering Temperature. Mater. Corros. 2015, 66, 1290–1298. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Mendez-Ramirez, C.T.; Carrera-Ramirez, M.G.; Baltazar-Zamora, M.A.; Santiago-Hurtado, G.; Lara-Banda, M.; Estupiñan-Lopez, F.; Nieves-Mendoza, D.; Almeraya-Calderon, F. Corrosion of Anodized Titanium Alloys. Coatings 2024, 14, 809. [Google Scholar] [CrossRef]
- Qu, S.; Pang, X.; Wang, Y.; Gao, K. Corrosion Behavior of Each Phase in Low Carbon Microalloyed Ferrite–Bainite Dual-Phase Steel: Experiments and Modeling. Corros. Sci. 2013, 75, 67–77. [Google Scholar] [CrossRef]
- Martínez-Aparicio, B.; Gaona-Tiburcio, C.; Almeraya-Calderon, F.; Goldsberry, R.; Castaneda, H. Evaluation of Passive Films on 17-7PH and 410 Stainless Steel Exposed to NaCl Solution. Materials 2024, 17, 4060. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cheng, X.; Dai, Z.; Liu, R.; Li, Z.; Cui, L.; Chen, M.; Ke, L. Synergistic Effect of Al2O3 Inclusion and Pearlite on the Localized Corrosion Evolution Process of Carbon Steel in Marine Environment. Materials 2018, 11, 2277. [Google Scholar] [CrossRef] [PubMed]
- Moon, A.P.; Sangal, S.; Layek, S.; Giribaskar, S.; Mondal, K. Corrosion Behavior of High-Strength Bainitic Rail Steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 1500–1518. [Google Scholar] [CrossRef]
AHSS CP780 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Element (wt. %) | C | Mn | Ti | P | Cr | S | Si | Nb | Al | Fe |
0.091 | 1.669 | 0.007 | 0.010 | 0.771 | 0.002 | 0.511 | 0.045 | 0.034 | Balance |
Sample | Rn (Ω·cm2) | LI | Corrosion Type | Kurtosis | Corrosion Type | Skew | Corrosion Type |
---|---|---|---|---|---|---|---|
Substrate | 9.31 × 102 ± 40 | 0.04 ± 005 | Mixed | 9.7 ± 2 | Localized | 3 ± 0.5 | Localized |
Phosphate | 1.5 × 103 ± 59 | 0.008 ± 0.001 | Uniform | 60 ± 7 | Localized | 4.7 ± 0.6 | Localized |
E-coat | 94.85 × 104 ± 78 | 0.9 ± 0.08 | Localized | 2.3 ± 0.9 | Localized | 0.0054 ± 0.0002 | Uniform |
Sample | ψ0 (dBi) | Zn0 (Ω·cm2) |
---|---|---|
Substrate | −113 | 784 |
Phosphate | −123 | 1979 |
E-coat | −170 | 25.82 × 105 |
NaCl Solution | |||||
---|---|---|---|---|---|
Sample | RR | Det | LAM | TT | T2 |
Substrate | 0.010 ± 0.002 | 0.98 ± 0.04 | 0.99 ± 0.007 | 10.8± 0.01 | 97.4± 0.7 |
Phosphate | 0.12 ± 0.03 | 0.86 ± 0.007 | 0.911 ± 0.01 | 0664 ± 0.6 | 35.6 ± 0.6 |
E-coat | 0.078 ± 0.002 | 0.62 ± 0.004 | 0.75 ± 0.003 | 3.47± 0.004 | 27.5± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Banda, M.; Almeraya-Calderón, F.; Jáquez-Muñoz, J.M.; Nieves-Mendoza, D.; Baltazar-Zamora, M.A.; Olguín-Coca, J.; Estupiñan-Lopez, F.; Cabral Miramontes, J.; Santiago-Hurtado, G.; Gaona-Tiburcio, C. A Study of the Corrosion Behavior of AHSS Complex-Phase CP 780 Employing an Electrochemical Noise Technique Analyzed by Different Methods. Metals 2025, 15, 59. https://doi.org/10.3390/met15010059
Lara-Banda M, Almeraya-Calderón F, Jáquez-Muñoz JM, Nieves-Mendoza D, Baltazar-Zamora MA, Olguín-Coca J, Estupiñan-Lopez F, Cabral Miramontes J, Santiago-Hurtado G, Gaona-Tiburcio C. A Study of the Corrosion Behavior of AHSS Complex-Phase CP 780 Employing an Electrochemical Noise Technique Analyzed by Different Methods. Metals. 2025; 15(1):59. https://doi.org/10.3390/met15010059
Chicago/Turabian StyleLara-Banda, Maria, Facundo Almeraya-Calderón, Jesús Manuel Jáquez-Muñoz, Demetrio Nieves-Mendoza, Miguel Angel Baltazar-Zamora, Javier Olguín-Coca, Francisco Estupiñan-Lopez, Jose Cabral Miramontes, Griselda Santiago-Hurtado, and Citlalli Gaona-Tiburcio. 2025. "A Study of the Corrosion Behavior of AHSS Complex-Phase CP 780 Employing an Electrochemical Noise Technique Analyzed by Different Methods" Metals 15, no. 1: 59. https://doi.org/10.3390/met15010059
APA StyleLara-Banda, M., Almeraya-Calderón, F., Jáquez-Muñoz, J. M., Nieves-Mendoza, D., Baltazar-Zamora, M. A., Olguín-Coca, J., Estupiñan-Lopez, F., Cabral Miramontes, J., Santiago-Hurtado, G., & Gaona-Tiburcio, C. (2025). A Study of the Corrosion Behavior of AHSS Complex-Phase CP 780 Employing an Electrochemical Noise Technique Analyzed by Different Methods. Metals, 15(1), 59. https://doi.org/10.3390/met15010059