Development and Performance Evaluation of a Mechanical Connection for Steel and Shape Memory Alloy Bars
Abstract
1. Introduction
2. Experiment Design
2.1. SMA Bar
2.2. Mechanical Coupler
3. Testing and Measurement
3.1. Test Procedure
3.2. Design of Heating Equipment
3.3. DIC-Based Displacement Measurement
4. Experimental Results and Discussion
4.1. Tensile Performance of Steel Bars
4.2. Connected Steel–SMA Bars: Steel Bar Yielding
4.3. Connected Steel–SMA Bars: SMA Bar Yielding
4.4. Connected Steel–SMA Bars: Heated SMA Bar Yielding
4.5. Slip Evaluation of Connected Steel–SMA Bars
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, L.C.; Read, T.A. Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase. J. Miner. Met. Mater. Soc. 1951, 3, 47–52. [Google Scholar] [CrossRef]
- Buehler, W.J.; Gilfrich, J.V.; Wiley, R.C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 1963, 34, 1475–1477. [Google Scholar] [CrossRef]
- Van Humbeeck, J.; Stalmans, R. Shape memory alloys, types and functionalities. In Encyclopedia of Smart Materials, 2nd ed.; Schwartz, M., Ed.; John Wiley and Sons: New York, NY, USA, 2002. [Google Scholar]
- Dong, Z.; Klotz, U.E.; Leinenbach, C.; Bergamini, A.; Czaderski, C.; Motavalli, M. A novel Fe-Mn-Si shape memory alloy with improved shape recovery properties by VC precipitation. Adv. Eng. Mater. 2009, 11, 40–44. [Google Scholar] [CrossRef]
- Sadiq, H.; Wong, M.B.; Al-Mahaidi, R.; Zhao, X.L. The effects of heat treatment on the recovery stresses of shape memory alloys. Smart Mater. Struct. 2010, 19, 035021. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Ramesh, K.T.; Van Humbeeck, J. High strain rate deformation of martensitic NiTi shape memory alloy. Scr. Mater. 1999, 41, 89–95. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y. Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy. Scr. Mater. 2001, 45, 153–160. [Google Scholar] [CrossRef]
- Mahmud, A.S.; Yang, H.; Tee, S.; Rio, G.; Liu, Y. Effect of annealing on deformation-induced martensite stabilisation of NiTi. Intermetallics 2008, 16, 209–214. [Google Scholar] [CrossRef]
- Janke, L.; Czaderski, C.; Motavalli, M.; Ruth, J. Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas. Mater. Struct. 2005, 38, 578–592. [Google Scholar]
- Shajil, N.; Srinivasan, S.M.; Santhanam, M. Self-centering of shape memory alloy fiber reinforced cement mortar members subjected to strong cyclic loading. Mater. Struct. 2013, 46, 651–661. [Google Scholar] [CrossRef]
- Jung, C.Y.; Lee, J.H. Crack closure and flexural tensile capacity with SMA fibers randomly embedded on tensile side of mortar beams. Nanotechnol. Rev. 2020, 9, 369–381. [Google Scholar] [CrossRef]
- Choi, E.; Ostadrahimi, A.; Lee, J.H. Pullout resistance of crimped reinforcing fibers using cold-drawn NiTi SMA wires. Constr. Build. Mater. 2020, 265, 120858. [Google Scholar] [CrossRef]
- Choi, E.; Kim, H.S.; Nam, T.H. Effect of crimped SMA fiber geometry on recovery stress and pullout resistance. Compos. Struct. 2020, 247, 112466. [Google Scholar] [CrossRef]
- Dębska, A.; Gwoździewicz, P.; Seruga, A.; Balandraud, X.; Destrebecq, J.F. The application of Ni–Ti SMA wires in the external prestressing of concrete hollow cylinders. Materials 2021, 14, 1354. [Google Scholar] [CrossRef]
- Schleiting, M.; Wetzel, A.; Bauer, A.; Frenck, J.M.; Niendorf, T.; Middendorf, B. Potential of Fe-Mn-Al-Ni Shape Memory Alloys for Internal Prestressing of Ultra-High Performance Concrete. Materials 2023, 16, 3816. [Google Scholar] [CrossRef] [PubMed]
- Beßling, M.; Czaderski, C.; Orlowsky, J. Prestressing effect of shape memory alloy reinforcements under serviceability tensile loads. Buildings 2021, 11, 101. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, Q.; Zhang, X.; Deng, E.; Gao, J. Experimental investigation on bending behavior of existing RC beam retrofitted with SMA-ECC composites materials. Materials 2021, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.; Andrawes, B. Innovative local prestressing system for concrete crossties using shape memory alloys. Eng. Struct. 2021, 247, 113048. [Google Scholar] [CrossRef]
- Raza, S.; Shafei, B.; Saiidi, M.S.; Motavalli, M.; Shahverdi, M. Shape memory alloy reinforcement for strengthening and self-centering of concrete structures—State of the art. Constr. Build. Mater. 2022, 324, 126628. [Google Scholar] [CrossRef]
- Alshannag, M.J.; Alqarni, A.S.; Higazey, M.M. Superelastic Nickel–Titanium (NiTi)-Based Smart Alloys for Enhancing the Performance of Concrete Structures. Materials 2023, 16, 4333. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Bratushka, S.N.; Beresnev, V.M.; Levintant-Zayonts, N. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses. Russ. Chem. Rev. 2013, 82, 1135. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Attarilar, S.; Gode, C.; Kandavalli, S.R.; Shamsborhan, M.; Wang, Q. Conceptual Analysis on Severe Plastic Deformation Processes of Shape Memory Alloys: Mechanical Properties and Microstructure Characterization. Metals 2023, 13, 447. [Google Scholar] [CrossRef]
- Nespoli, A.; Ninarello, D.; Fanciulli, C. A Review on Shape Memory Alloys with Martensitic Transition at Cryogenic Temperatures. Metals 2023, 13, 1311. [Google Scholar] [CrossRef]
- Abraik, E.; El-Fitiany, S.F.; Youssef, M.A. Seismic performance of concrete core walls reinforced with shape memory alloy bars. Structures 2020, 27, 1479–1489. [Google Scholar] [CrossRef]
- Abraik, E.; Youssef, M.A. Ductility and overstrength of shape-memory-alloy reinforced-concrete shear walls. Eng. Struct. 2021, 239, 112236. [Google Scholar] [CrossRef]
- Siddiquee, K.N.; Billah, A.M.; Issa, A. Seismic collapse safety and response modification factor of concrete frame buildings reinforced with superelastic shape memory alloy (SMA) rebar. J. Build. Eng. 2021, 42, 102468. [Google Scholar] [CrossRef]
- Ferraioli, M.; Concilio, A.; Molitierno, C. Seismic performance of a reinforced concrete building retrofitted with self-centering shape memory alloy braces. Earthq. Eng. Eng. Vib. 2022, 21, 785–809. [Google Scholar] [CrossRef]
- Bompa, D.V.; Elghazouli, A.Y. Ductility considerations for mechanical reinforcement couplers. Structures 2017, 12, 115–119. [Google Scholar] [CrossRef]
- Bompa, D.V.; Elghazouli, A.Y. Inelastic cyclic behaviour of RC members incorporating threaded reinforcement couplers. Eng. Struct. 2019, 180, 468–483. [Google Scholar] [CrossRef]
- Ben-dahou, A.; Ferrier, E.; Gabor, A.; Michel, L.; Gardes, R.; Boisson, R.; Poissonnet, C.; Dolo, J.M. Influence of rebar couplers on the cracking behavior of reinforced concrete beams. Nucl. Eng. Des. 2024, 416, 112801. [Google Scholar] [CrossRef]
- Pareek, S.; Suzuki, Y.; Araki, Y.; Youssef, M.A.; Meshaly, M. Plastic hinge relocation in reinforced concrete beams using Cu-Al-Mn SMA bars. Eng. Struct. 2018, 175, 765–775. [Google Scholar] [CrossRef]
- Billah, A.M.; Alam, M.S. Plastic hinge length of shape memory alloy (SMA) reinforced concrete bridge pier. Eng. Struct. 2016, 117, 321–331. [Google Scholar] [CrossRef]
- Molod, M.A.; Spyridis, P.; Barthold, F.J. Applications of shape memory alloys in structural engineering with a focus on concrete construction—A comprehensive review. Constr. Build. Mater. 2022, 337, 127565. [Google Scholar] [CrossRef]
- Otsuka, K.; Sawamura, T.; Shimizu, K. Crystal structure and internal defects of equiatomic TiNi martensite. Phys. Status Solidi (A) 1971, 5, 457–470. [Google Scholar] [CrossRef]
- Chowdhury, P.; Sehitoglu, H. Deformation physics of shape memory alloys-fundamentals at atomistic frontier. Prog. Mater. Sci. 2017, 88, 49–88. [Google Scholar] [CrossRef]
- Dolce, M.; Cardone, D. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. Int. J. Mech. Sci. 2001, 43, 2657–2677. [Google Scholar] [CrossRef]
- KS B 0802: Korean Standard (KS); Method of Tensile Test for Metallic Materials. Korean Standards Association: Seoul, Republic of Korea, 2003.
- ASTM A370-23; Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM International: West Conshohocken, PA, USA, 2020.
- KS D 0249: Korean Standard (KS); Method of Inspection for Mechanical Splicing Joint of Bars for Concrete Reinforcement. Korean Standards Association: Seoul, Republic of Korea, 2019.
- KS D 3504: Korean Standard (KS); Steel Bars for Concrete Reinforcement. Korean Standards Association: Seoul, Republic of Korea, 2021.
- Choi, E.; Jeon, J.S.; Lee, J.H. Self-centering capacity of RC columns with smart plastic hinges of martensitic NiTi SMA bars. Smart Mater. Struct. 2023, 32, 115015. [Google Scholar] [CrossRef]
- Quanjin, M.; Rejab, M.R.M.; Halim, Q.; Merzuki, M.N.M.; Darus, M.A.H. Experimental investigation of the tensile test using digital image correlation (DIC) method. Mater. Today Proc. 2020, 27, 757–763. [Google Scholar] [CrossRef]
- Chu, T.C.; Ranson, W.F.; Sutton, M.A. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 1985, 25, 232–244. [Google Scholar] [CrossRef]
- Bruck, H.A.; McNeill, S.R.; Sutton, M.A.; Peters, W.H. Digital image correlation using Newton-Raphson method of partial differential correction. Exp. Mech. 1989, 29, 261–267. [Google Scholar] [CrossRef]
- Pan, B. Recent progress in digital image correlation. Exp. Mech. 2011, 51, 1223–1235. [Google Scholar] [CrossRef]
Specimens | (MPa) | (MPa) | E (GPa) | |||
---|---|---|---|---|---|---|
D25 | Specimen 1 | 696 | 821 | 190 | 0.0037 | 0.0808 |
Specimen 2 | 686 | 823 | 196 | 0.0035 | 0.0815 | |
D13 | Specimen 1 | 422 | 587 | 201 | 0.0021 | 0.1576 |
Specimen 2 | 403 | 586 | 203 | 0.0020 | 0.1548 |
Specimens | (MPa) | (MPa) | E (GPa) | |||
---|---|---|---|---|---|---|
Austenite | H-Steel bars | 433 | 658 | 190 | 0.0023 | 0.1818 |
423 | 610 | 193 | 0.0022 | 0.1230 | ||
L-Steel bars | 430 | 651 | 196 | 0.0022 | 0.1560 | |
420 | 614 | 200 | 0.0021 | 0.1220 | ||
Martensite | H-Steel bars | 421 | 638 | 200 | 0.0021 | 0.1545 |
410 | 601 | 205 | 0.0020 | 0.1340 | ||
L-Steel bars | 420 | 641 | 191 | 0.0022 | 0.2099 | |
412 | 605 | 187 | 0.0022 | 0.1450 |
Specimens | (MPa) | (MPa) | E (GPa) | |||
---|---|---|---|---|---|---|
Austenite | Specimen 1 | 571 | 844 | 72 | 0.0079 | 0.1321 |
Specimen 2 | 590 | 845 | 78 | 0.0076 | 0.1286 | |
Martensite | Specimen 1 | 223 | 626 | 30 | 0.0074 | 0.1162 |
Specimen 2 | 214 | 635 | 29 | 0.0073 | 0.1165 |
Specimen | (MPa) | (MPa) | E (GPa) | |||
---|---|---|---|---|---|---|
Non-Heated Martensite | 223 | 626 | 30 | 0.0074 | 0.1162 | |
Heated Martensite | Specimen 1 | 230 | 598 | 33 | 0.0069 | 0.2082 |
Specimen 2 | 210 | 596 | 27 | 0.0078 | 0.1600 | |
Average | 220 | 597 | 30 | 0.0074 | 0.1841 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.-K.; Choi, E.; Lee, J.-H. Development and Performance Evaluation of a Mechanical Connection for Steel and Shape Memory Alloy Bars. Metals 2024, 14, 300. https://doi.org/10.3390/met14030300
Song M-K, Choi E, Lee J-H. Development and Performance Evaluation of a Mechanical Connection for Steel and Shape Memory Alloy Bars. Metals. 2024; 14(3):300. https://doi.org/10.3390/met14030300
Chicago/Turabian StyleSong, Min-Kyu, Eunsoo Choi, and Jong-Han Lee. 2024. "Development and Performance Evaluation of a Mechanical Connection for Steel and Shape Memory Alloy Bars" Metals 14, no. 3: 300. https://doi.org/10.3390/met14030300
APA StyleSong, M.-K., Choi, E., & Lee, J.-H. (2024). Development and Performance Evaluation of a Mechanical Connection for Steel and Shape Memory Alloy Bars. Metals, 14(3), 300. https://doi.org/10.3390/met14030300