Insight into the Role of Mo Content on the Microstructure and Impact Toughness of X80 Thick-Walled Low-Temperature Pipeline Steel
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Microstructure
3.2. Impact Performance Test
4. Discussion
4.1. Effect of Mo Content on the Multiphase Microstructure
4.2. Effect of Mo Content on the Impact Toughness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, W.; Gao, X.H.; Qin, X.M.; Zhao, D.W.; Du, L.X.; Wang, G.D. Impact fracture behavior of X80 pipeline steel. Acta Metall. Sin. 2010, 46, 533–540. [Google Scholar] [CrossRef]
- Fu, C.; Li, X.D.; Li, H.C.; Han, T.; Han, B.; Wang, Y. Influence of ICCGHAZ on the Low-Temperature Toughness in HAZ of Heavy-Wall X80 Pipeline Steel. Metals 2022, 12, 907. [Google Scholar] [CrossRef]
- Wang, X.Q.; Yuan, G.; Zhao, J.H.; Wang, G.D. Microstructure and Strengthening/Toughening Mechanisms of Heavy Gauge Pipeline Steel Processed by Ultrafast Cooling. Metals 2020, 10, 1323. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, W.; Wang, X.; Kang, J.; Yuan, G.; Di, H.; Misra, R.D.K. Effect of microstructure on the crack propagation behavior of microalloyed 560 MPa (X80) strip during ultra-fast cooling. Mater. Sci. Eng. A 2016, 666, 214–224. [Google Scholar] [CrossRef]
- Qian, L.H.; Zhou, Q.; Zhang, F.C.; Meng, J.Y.; Zhang, M.; Tian, Y. Microstructure and mechanical properties of a low carbon carbide-free bainitic steel co-alloyed with Al and Si. Mater. Des. 2012, 39, 264–268. [Google Scholar] [CrossRef]
- Kong, J.H.; Zhen, L.; Guo, B.; Li, P.H.; Wang, A.H.; Xie, C.S. Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel. Mater. Des. 2004, 25, 723–728. [Google Scholar] [CrossRef]
- Dong, L.M.; Yang, L.; Dai, J.; Zhang, Y.; Wang, X.L.; Shang, C.J. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe. Acta Metall. Sin. 2017, 53, 657–668. [Google Scholar] [CrossRef]
- Tong, M.W.; Yuan, Z.X.; Zhang, K.G.; Rui, X.L. Influence of Mo Content on Microstructure and Mechanical Properties of Fire-Resistant Construction Steel. J. Iron Steel Res. Int. 2011, 18, 903–907. [Google Scholar]
- Far, A.R.H.; Anijdan, S.H.M.; Abbasi, S.M. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type. Mater. Sci. Eng. A 2019, 746, 384–393. [Google Scholar] [CrossRef]
- Bhole, S.D.; Nemade, J.B.; Collins, L.; Liu, C. Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel. J. Mater. Process. Technol. 2006, 173, 92–100. [Google Scholar] [CrossRef]
- Hu, H.J.; Xu, G.; Zhou, M.X.; Yuan, Q. Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels. Metals 2016, 6, 173. [Google Scholar] [CrossRef]
- Zhang, L.F.; Wang, Y.F.; Zhang, L.; Wang, Q.F.; Wang, T.S. Mo Content Effect on Microstructures and Toughness of the Simulated Coarse-Grained Heat-Affected Zone of Weathering Bridge Steels. J. Mater. Eng. Perform. 2022, 31, 5641–5651. [Google Scholar] [CrossRef]
- Soliman, M.; Mostafa, H.; El-Sabbagh, A.S.; Palkowski, H. Low temperature bainite in steel with 0.26 wt% C. Mater. Sci. Eng. A 2010, 527, 7706–7713. [Google Scholar] [CrossRef]
- Mohrbacher, H.; Sun, X.J.; Yong, Q.L.; Dong, H. MoNb-Based Alloying Concepts for Low-Carbon Bainitic Steels. In Proceedings of the 1st International Conference on Advanced Steels (ICAS 2010), Chinese Soc Met, Guilin, China, 9–11 November 2010; pp. 289–301. [Google Scholar]
- Zhao, L.Y.; Wang, Q.M.; Shi, G.H.; Hu, B.; Wang, S.B.; Qiao, M.L.; Wang, Q.F.; Liu, R.P. The impacts of M/A constituents decomposition and complex precipitation on mechanical properties of high-strength weathering steel subjected to tempering treatment. J. Mater. Res. Technol.-JMRT 2023, 23, 2504–2526. [Google Scholar] [CrossRef]
- Xie, C.S.; Liu, Z.D.; He, X.K.; Wang, X.T.; Qiao, S.B. Effect of martensite-austenite constituents on impact toughness of pre-tempered MnNiMo bainitic steel. Mater. Charact. 2020, 161, 14. [Google Scholar] [CrossRef]
- Long, X.Y.; Zhang, F.C.; Kang, J.; Lv, B.; Shi, X.B. Low-temperature bainite in low-carbon steel. Mater. Sci. Eng. A 2014, 594, 344–351. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Wang, Q.F.; Shi, G.H.; Yang, X.Y.; Qiao, M.L.; Wu, J.P.; Zhang, F.C. In-depth understanding of the relationship between dislocation substructure and tensile properties in a low-carbon microalloyed steel. Mater. Sci. Eng. A 2022, 854, 12. [Google Scholar] [CrossRef]
- Shi, G.H.; Zhao, H.L.; Zhang, S.M.; Wang, Q.F.; Zhang, F.C. Microstructural characteristics and impact fracture behaviors of low-carbon vanadium-microalloyed steel with different nitrogen contents. Mater. Sci. Eng. A 2020, 769, 13. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, G.H.; Sun, R.; Guo, K.; Zhang, C.L.; Wang, Q.F. Effect of Si content on the microstructures and the impact properties in the coarse-grained heat-affected zone (CGHAZ) of typical weathering steel. Mater. Sci. Eng. A 2019, 762, 10. [Google Scholar] [CrossRef]
- Fan, H.B.; Shi, G.H.; Wang, Q.M.; Wang, L.P.; Wang, Q.F.; Zhang, F.C. Improvement of impact toughness by microstructure refinement of simulated CGHAZ through enhancing welding heat input of low carbon Mo-V-Ti-N-B steel. Mater. Res. Express 2022, 9, 11. [Google Scholar] [CrossRef]
- Lan, L.Y.; Qiu, C.L.; Zhao, D.W.; Gao, X.H.; Du, L.X. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel. Mater. Sci. Eng. A 2011, 529, 192–200. [Google Scholar] [CrossRef]
- Zhu, D.M.; He, J.L.; Shi, G.H.; Wang, Q.F. Effect of Welding Heat Input on the Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel. Acta Metall. Sin. 2022, 58, 8. [Google Scholar]
- Wang, L.P.; Fan, H.B.; Shi, G.H.; Wang, Q.M.; Wang, Q.F.; Zhang, F.C. Effect of Ferritic Morphology on Yield Strength of CGHAZ in a Low Carbon Mo-V-N-Ti-B Steel. Metals 2021, 11, 1863. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Lee, B.S. Effects of grain size on fracture toughness in transition temperature region of Mn-Mo-Ni low-alloy steels. Mater. Sci. Eng. A 2003, 359, 198–209. [Google Scholar] [CrossRef]
- Fan, L.; Zhou, D.H.; Wang, T.L.; Li, S.R.; Wang, Q.F. Tensile properties of an acicular ferrite and martensite/austenite constituent steel with varying cooling rates. Mater. Sci. Eng. A 2014, 590, 224–231. [Google Scholar] [CrossRef]
- Huda, N.; Wang, Y.Y.; Li, L.J.; Gerlich, A.P. Effect of martensite-austenite (MA) distribution on mechanical properties of inter-critical Reheated Coarse Grain heat affected zone in X80 linepipe steel. Mater. Sci. Eng. A 2019, 765, 9. [Google Scholar] [CrossRef]
- Taboada, M.C.; Iza-Mendia, A.; Gutierrez, I.; Jorge-Badiola, D. Substructure Development and Damage Initiation in a Carbide-Free Bainitic Steel upon Tensile Test. Metals 2019, 9, 1261. [Google Scholar] [CrossRef]
- Han, J.; da Silva, A.K.; Ponge, D.; Raabe, D.; Lee, S.M.; Lee, Y.K.; Lee, S.I.; Hwang, B. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater. 2017, 122, 199–206. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Zhao, L.; Li, F.; He, J.; Wang, Q.; Liu, R. Influence of Heat Input on the Microstructure and Impact Toughness in Weld Metal by High-Efficiency Submerged Arc Welding. Metals 2023, 13, 1217. [Google Scholar] [CrossRef]
Steel | C | Si | Mn | P | S | Ni | Cr | Mo | Cu | Nb + Ti |
---|---|---|---|---|---|---|---|---|---|---|
25Mo | 0.079 | 0.21 | 1.72 | 0.008 | 0.002 | 0.60 | 0.17 | 0.25 | 0.15 | 0.065 |
40Mo | 0.07 | 0.20 | 1.73 | 0.007 | 0.003 | 0.61 | 0.16 | 0.40 | 0.16 | 0.067 |
Steel | Heating Temperature/°C | RRST/°C | RRFT/°C | FRST/°C | FRFT/°C | SCT/°C | FCT/°C | Cooling Rate/°C/s |
---|---|---|---|---|---|---|---|---|
25Mo | 1175 | 1090 | 1041 | 818 | 795 | 753 | 425 | 20 |
40Mo | 1178 | 1088 | 1036 | 815 | 788 | 750 | 422 | 20 |
Steel | fM/A/% | dM/A/μm | Avg. KAM/° | MED2≤θ<15°/μm | MEDθ≥15°/μm | f(MTA≥15)/% |
---|---|---|---|---|---|---|
25Mo | 11.9 ± 0.40 | 0.85 ± 0.03 | 0.8651 | 3.86 | 4.45 | 49.5 |
40Mo | 13.3 ± 0.35 | 1.15 ± 0.12 | 1.5436 | 3.34 | 3.90 | 41.3 |
Sample | Fm/KN | Ei/J | Ep/J | Et/J | Ep/Et | SA/% |
---|---|---|---|---|---|---|
25Mo | 26 ± 2 | 78.5 ± 5 | 127.5 ± 4 | 206 ± 8 | 0.62 | 80 |
40Mo | 30.6 ± 3 | 50 ± 4 | 6.5 ± 2 | 57 ± 6 | 0.12 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Zhang, Z.; Zhao, L.; Guan, Y.; Yuan, L.; Wang, Q. Insight into the Role of Mo Content on the Microstructure and Impact Toughness of X80 Thick-Walled Low-Temperature Pipeline Steel. Metals 2023, 13, 1530. https://doi.org/10.3390/met13091530
Jiang J, Zhang Z, Zhao L, Guan Y, Yuan L, Wang Q. Insight into the Role of Mo Content on the Microstructure and Impact Toughness of X80 Thick-Walled Low-Temperature Pipeline Steel. Metals. 2023; 13(9):1530. https://doi.org/10.3390/met13091530
Chicago/Turabian StyleJiang, Jinxing, Zhongde Zhang, Liyang Zhao, Yingping Guan, Liangzeng Yuan, and Qingfeng Wang. 2023. "Insight into the Role of Mo Content on the Microstructure and Impact Toughness of X80 Thick-Walled Low-Temperature Pipeline Steel" Metals 13, no. 9: 1530. https://doi.org/10.3390/met13091530
APA StyleJiang, J., Zhang, Z., Zhao, L., Guan, Y., Yuan, L., & Wang, Q. (2023). Insight into the Role of Mo Content on the Microstructure and Impact Toughness of X80 Thick-Walled Low-Temperature Pipeline Steel. Metals, 13(9), 1530. https://doi.org/10.3390/met13091530