The Effect of B on the Co-Segregation of C-Cr at Grain Boundaries in Austenitic Steels
Abstract
1. Introduction
2. Computational Methods and Structural Models
2.1. Computational Methods
2.2. Structural Models
3. Results and Discussion
3.1. Segregation Tendencies of B, C, and Cr at GBs
3.2. Co-Segregation Tendencies of C-Cr, B-C, and B-Cr at GBs
4. Conclusions
- (1)
- B, C, and Cr all tend to segregate at the Σ5(210), Σ9(221), and Σ11(113) GBs. B and C are more prone to segregate at GBs than Cr, especially at the Σ5(210) GB.
- (2)
- C and Cr tend to co-segregate at the Σ5(210), Σ9(221), and Σ11(113) GBs with short interatomic distances, and their segregation region is much wider for the Σ9(221) GB. B and C easily co-segregate at the three GBs, but their interatomic distances are far apart. Grain boundary B has a certain inhibitory effect on Cr segregation in its vicinity, especially at the Σ9(221) and Σ11(113) GBs.
- (3)
- When B exists at the Σ5(210) GB, B, C, and Cr tend to co-segregate at the GB, while if B was pre-placed at the Σ9(221) and Σ11(113) GBs, it exhibits a certain inhibitory effect on the Cr segregation at the two GBs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.H. Stainless Steels and the Heat Treatment, 1st ed.; Liaoning Science and Technology Press: Shenyang, China, 2010; pp. 23–25. [Google Scholar]
- Menzel, J.; Kirschner, W.; Stein, G. High nitrogen containing Ni-free austenitic steels for medical applications. ISIJ Int. 1996, 36, 893–900. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, T.H. Precipitation sequences in austenitic Fe-22Cr-21Ni-6Mo-(N) stainless steels. Mater. Sci. Forum 1999, 318, 109–114. [Google Scholar] [CrossRef]
- Simmons, J.W.; Covino, B.S., Jr.; Hawk, J.A.; Dunning, J.S. Effect of nitride (Cr2N) precipitation on the mechanical, corrosion, and wear properties of austenitic stainless steel. ISIJ Int. 1996, 36, 846–854. [Google Scholar] [CrossRef]
- Ha, H.Y.; Kwon, H.S. Effects of Cr2N on the pitting corrosion of high nitrogen stainless steels. Electrochim. Acta 2007, 52, 2175–2180. [Google Scholar] [CrossRef]
- Liu, G.; Han, Y.; Shi, Z.; Sun, J.; Zou, D.; Qiao, G. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: A study with processing map. Mater. Des. 2014, 53, 662–672. [Google Scholar] [CrossRef]
- Pu, E.; Zheng, W.; Xiang, J.; Song, Z.; Feng, H.; Zhu, Y. Hot working characteristic of superaustenitic stainless steel 254SMO. Acta Metall. Sin. 2014, 27, 313–323. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y.; Bai, J.; Dong, N.; Liu, Y.; Zhang, C.; Han, P. Effect of B addition on the microstructure and corrosion resistance of S31254 super austenitic stainless steels after solid solution treatment. Mater. Lett. 2019, 252, 60–63. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y.; Bai, J.; Dong, N.; Liu, Y.; Zhang, C.; Han, P. The mechanism on the B addition to regulate phase precipitation and improve intergranular corrosion resistance in UNS S31254 superaustenitic stainless steels. J. Electrochem. Soc. 2019, 166, 600–608. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, S.; Li, H.; Jiang, Z.; Feng, H.; Xu, P.; Han, P. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 112, 184–194. [Google Scholar] [CrossRef]
- Wu, M.W.; Lin, Z.J.; Lin, C.Y.; Chi, S.X.; Tsai, M.K.; Ni, K. Mechanical properties and fracture mechanism of boron-containing 304L austenitic stainless steel densified by liquid phase sintering. Mater. Sci. Eng. A 2021, 814, 141182. [Google Scholar] [CrossRef]
- Abe, F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 °C and above. Engineering 2015, 1, 211–224. [Google Scholar] [CrossRef]
- Abe, F. Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation. Key Eng. Mater. 2007, 345, 569–572. [Google Scholar] [CrossRef]
- Golpayegani, A.; Liu, F.; Svensson, H.; Andersson, M.; Andrén, H.O. Microstructure of a creep-resistant 10 pct chromium steel containing 250 ppm boron. Metall. Mater. Trans. A 2011, 42, 940–951. [Google Scholar] [CrossRef]
- Hättestrand, M.; Andrén, H.-O. Boron distribution in 9–12% chromium steels. Mater. Sci. Eng. A 1999, 270, 33–37. [Google Scholar] [CrossRef]
- Osanai, T.; Sekido, N.; Yonemura, M.; Maruyama, K.; Takeuchi, M.; Yoshimi, K. Evolution of boron segregation during tempering in B doped 9%Cr ferritic steel. Mater. Charact. 2021, 177, 111192. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhang, W.; Li, J.; Chou, K. Effect of cerium on the austenitic nucleation and growth of high-Mo austenitic stainless steel. Metall. Mater. Trans. B 2020, 51, 1773–1783. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Sun, Y.; Zhao, A.; Zhang, W.; Li, J.; Dong, H.; Chou, K. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels. J. Alloys Compd. 2020, 815, 152418. [Google Scholar] [CrossRef]
- Suikkanen, P. Development and Processing of Low Carbon Bainitic Steels. Ph.D. Thesis, University of Oulu, Oulu, Finland, 2009. [Google Scholar]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.-Condens. Mat. 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Basinski, Z.S.; Hume-Rothery, W.; Sutton, A.L. The lattice expansion of iron. Proc. R. Soc. Lond. A Math. Phys. Sci. 1955, 229, 459–467. [Google Scholar] [CrossRef]
- Shang, J.X.; Wang, C.Y. Electronic effects of alloying elements Nb and V on body-centred-cubic Fe grain boundary cohesion. J. Phys.-Condens. Mat. 2001, 13, 9635–9644. [Google Scholar] [CrossRef]
- Tran, R.; Xu, Z.; Zhou, N.; Radhakrishnan, B.; Luo, J.; Ong, S.P. Computational study of metallic dopant segregation and embrittlement at molybdenum grain boundaries. Acta Mater. 2016, 117, 91–99. [Google Scholar] [CrossRef]
- Bean, J.J.; McKenna, K.P. Origin of differences in the excess volume of copper and nickel grain boundaries. Acta Mater. 2016, 110, 246–257. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, J.; Zhang, P.; Mei, X.; Huang, S.; Zhao, J. The effect of Cr on He segregation and diffusion at Σ3 (112) grain boundary in α-Fe. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2019, 456, 7–11. [Google Scholar] [CrossRef]
- Lejcek, P. Grain Boundary Segregation in Metals, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 38–50. [Google Scholar]
- Zhao, D.; Løvvik, O.M.; Marthinsen, K.; Li, Y. Segregation of Mg, Cu and their effects on the strength of Al Σ5(210)[001] symmetrical tilt grain boundary. Acta Mater. 2018, 145, 235–246. [Google Scholar] [CrossRef]
- Xu, P.P.; Ma, J.Y.; Jiang, Z.H.; Zhang, Y.; Liang, C.X.; Dong, N.; Han, P.D. Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study. Chin. Phys. B 2022, 31, 116402. [Google Scholar] [CrossRef]
- Zheng, H.; Li, X.G.; Tran, R.; Chen, C.; Horton, M.; Winston, D.; Persson, K.A.; Ong, S.P. Grain boundary properties of elemental metals. Acta Mater. 2020, 186, 40–49. [Google Scholar] [CrossRef]
- Xu, P.P.; Han, P.D.; Zhang, Z.X.; Zhang, C.L.; Dong, N.; Wang, J. First-principles study of boron segregation in fcc-Fe grain boundaries and its influence on interface adhesive strength. Acta Phys. Sin.-Chin. Ed. 2021, 70, 166401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Xu, P.; Han, P.; Dong, N.; Wang, J.; Zhang, C. The Effect of B on the Co-Segregation of C-Cr at Grain Boundaries in Austenitic Steels. Metals 2023, 13, 1044. https://doi.org/10.3390/met13061044
Yan X, Xu P, Han P, Dong N, Wang J, Zhang C. The Effect of B on the Co-Segregation of C-Cr at Grain Boundaries in Austenitic Steels. Metals. 2023; 13(6):1044. https://doi.org/10.3390/met13061044
Chicago/Turabian StyleYan, Xin, Panpan Xu, Peide Han, Nan Dong, Jian Wang, and Caili Zhang. 2023. "The Effect of B on the Co-Segregation of C-Cr at Grain Boundaries in Austenitic Steels" Metals 13, no. 6: 1044. https://doi.org/10.3390/met13061044
APA StyleYan, X., Xu, P., Han, P., Dong, N., Wang, J., & Zhang, C. (2023). The Effect of B on the Co-Segregation of C-Cr at Grain Boundaries in Austenitic Steels. Metals, 13(6), 1044. https://doi.org/10.3390/met13061044