A Method for Preparing AgNWs with Accelerated Seed–Wire Conversion Time
Abstract
1. Introduction
2. Method
2.1. Chemicals
2.2. Preparation of AgNWs
2.3. Structural Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Han, L.; Wang, Y.; Yang, Z.; Zhu, F.; Xu, M. Tunable thermal-response shape memory bio-polymer hydrogels as body motion sensors. Eng. Sci. 2019, 9, 60–67. [Google Scholar] [CrossRef]
- Zhao, L.; Tallman, T.; Lin, G. Spatial damage characterization in self-sensing materials via neural network-aided electrical impedance tomography: A computational study. ES Mater. Manuf. 2021, 12, 78–88. [Google Scholar]
- Dong, Q.; Wang, X.; Liu, H.; Ryu, H.; Zhao, J.; Li, B.; Lei, Y. Heterogeneous iridium oxide/gold nanocluster for non-enzymatic glucose sensing and pH probing. Eng. Sci. 2019, 8, 46–53. [Google Scholar] [CrossRef]
- Padvi, M.N.; Moholkar, A.V.; Prasad, S.R.; Prasad, N.R. A critical review on design and development of gas sensing materials. Eng. Sci. 2021, 15, 20–37. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, G.; Wei, X.; Zhan, C.; Jeon, J.; Wang, X.; Jeffryes, C.; Guo, Z.; Wei, S.; Wujcik, E.K. Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv. Compos. Hybrid Mater. 2019, 2, 711–719. [Google Scholar] [CrossRef]
- Wei, H.; Li, A.; Kong, D.; Li, Z.; Cui, D.; Li, T.; Dong, B.; Guo, Z. Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv. Compos. Hybrid Mater. 2021, 4, 86–95. [Google Scholar] [CrossRef]
- Jayachandiran, J.; Arivanandhan, M.; Padmaraj, O.; Jayavel, R.; Nedumaran, D. Investigation on ozone-sensing characteristics of surface sensitive hybrid rGO/WO3 nanocomposite films at ambient temperature. Adv. Compos. Hybrid Mater. 2020, 3, 16–30. [Google Scholar] [CrossRef]
- Patil, S.S.; Bhat, T.S.; Teli, A.M.; Beknalkar, S.A.; Dhavale, S.B.; Faras, M.M.; Karanjkar, M.M.; Patil, P.S. Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: An overview. Eng. Sci. 2020, 12, 38–51. [Google Scholar]
- Cai, J.; Xu, W.; Liu, Y.; Zhu, Z.; Liu, G.; Ding, W.; Wang, G.; Wang, H.; Luo, Y. Robust construction of flexible bacterial Cellulose@Ni(OH)2 paper: Toward high capacitance and sensitive H2O2 detection. Eng. Sci. 2019, 5, 21–29. [Google Scholar] [CrossRef]
- Nie, R.; Wang, Q.; Sun, P.; Wang, R.; Yuan, Q.; Wang, X. Pulsed laser deposition of NiSe2 film on carbon nanotubes for high-performance supercapacitor. Eng. Sci. 2019, 6, 22–29. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Chai, H.; Cao, Y.; Chen, X. Hydrothermal synthesis of CuCo2S4 nano-structure and N-doped graphene for high-performance aqueous asymmetric supercapacitors. ES Energy Environ. 2019, 4, 19–26. [Google Scholar]
- Sayyed, S.G.; Mahadik, M.A.; Shaikh, A.V.; Jang, J.S.; Pathan, H.M. Nano-metal oxide based supercapacitor via electrochemical deposition. ES Energy Environ. 2019, 3, 25–44. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ahmed, R.; Ma, K.; Xu, S.; Tao, T.; Aslam, M.A.; Amir, M.; Wang, J. Composite of strip-shaped ZIF-67 with polypyrrole: A conductive polymer-MOF electrode system for stable and high specific capacitance. Eng. Sci. 2021, 13, 71–78. [Google Scholar] [CrossRef]
- Li, X.; Zhao, W.; Yin, R.; Huang, X.; Qian, L. A highly porous polyaniline–graphene composite used for electrochemical supercapacitors. Eng. Sci. 2018, 3, 89–95. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, X.; Cao, D. Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials. Eng. Sci. 2018, 1, 55–63. [Google Scholar] [CrossRef]
- Li, G.; Ji, Y.; Zuo, D.; Xu, J.; Zhang, H. Carbon electrodes with double conductive networks for high-performance electrical double-layer capacitors. Adv. Compos. Hybrid Mater. 2019, 2, 456–461. [Google Scholar] [CrossRef]
- Xiao, L.; Qi, H.; Qu, K.; Shi, C.; Cheng, Y.; Sun, Z.; Yuan, B.; Huang, Z.; Pan, D.; Guo, Z. Layer-by-layer assembled freestanding and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv. Compos. Hybrid Mater. 2021, 4, 306–316. [Google Scholar] [CrossRef]
- Koo, J.H.; Kim, D.C.; Shim, H.J.; Kim, T.; Kim, D. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Adv. Funct. Mater. 2018, 28, 1801834. [Google Scholar] [CrossRef]
- Ovid’Ko, I.A.; Valiev, R.Z.; Zhu, Y.T. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci. 2018, 94, 462–540. [Google Scholar] [CrossRef]
- Cao, Y.; Ni, S.; Liao, X.; Song, M.; Zhu, Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mat. Sci. Eng. R 2018, 133, 1–59. [Google Scholar] [CrossRef]
- Alawi, O.A.; Sidik, N.A.C.; Xian, H.W.; Kean, T.H.; Kazi, S.N. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int. J. Heat Mass Transf. 2018, 116, 1314–1325. [Google Scholar] [CrossRef]
- Zhou, G.; Shan, Y.; Hu, Y.; Xu, X.; Long, L.; Zhang, J.; Dai, J.; Guo, J.; Shen, J.; Li, S.; et al. Half-metallic carbon nitride nanosheets with micro grid mode resonance structure for efficient photocatalytic hydrogen evolution. Nat. Commun. 2018, 9, 3366. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Liu, T.; Xie, L.; Sun, X.; Luo, Y. Metallic nickel nitride nanosheet: An efficient catalyst electrode for sensitive and selective non-enzymatic glucose sensing. Sens. Actuators B Chem. 2018, 255, 2794–2799. [Google Scholar] [CrossRef]
- Wei, Q.; Xiong, F.; Tan, S.; Huang, L.; Lan, E.H.; Dunn, B.; Mai, L. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300. [Google Scholar] [CrossRef]
- Ge, M.; Li, Q.; Cao, C.; Huang, J.; Li, S.; Zhang, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xiao, X.; Li, B.; Gu, P.; Xue, H.; Pang, H. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. 2017, 5, 8155–8186. [Google Scholar] [CrossRef]
- Wang, C.; Kaneti, Y.V.; Bando, Y.; Lin, J.; Liu, C.; Li, J.; Yamauchi, Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 2018, 5, 394–407. [Google Scholar] [CrossRef]
- Gong, S.; Cheng, W. One-dimensional nanomaterials for soft electronics. Adv. Electron. Mater. 2017, 3, 1600314. [Google Scholar] [CrossRef]
- Tian, W.; Hu, H.; Wang, Y.; Li, P.; Liu, J.; Liu, J.; Wang, X.; Xu, X.; Li, Z.; Zhao, Q.; et al. Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano 2018, 12, 1990–2000. [Google Scholar] [CrossRef]
- Seok, I.; Al-Hossain, A.A.; Waliullah, M.; Ryu, J.E. Fabrication of nano-patterned arrays using pulsed light technique. Eng. Sci. 2019, 7, 59–64. [Google Scholar] [CrossRef]
- Ul-Islam, M.U.; Ali, J.; Khan, W.; Haider, A.; Shah, N.; Ahmad, M.W.; Ullah, M.W.; Yang, G. Fast 4-nitrophenol reduction using gelatin hydrogel containing silver nanoparticles. Eng. Sci. 2019, 8, 19–24. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L. Facile one-pot synthesis of silver nanoparticles supported on α-zirconium phosphate single-layer nanosheets. ES Mater. Manuf. 2019, 5, 24–28. [Google Scholar]
- Garnett, E.C.; Cai, W.; Cha, J.J.; Mahmood, F.; Connor, S.T.; Greyson Christoforo, M.; Cui, Y.; McGehee, M.D.; Brongersma, M.L. Self-Limited Plasmonic Welding of Silver Nanowire Junctions. Nat. Mater. 2012, 11, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wyman, I.; Hu, J.; Lin, S.; Zhong, Z.; Tu, Y.; Huang, Z.; Wei, Y. Silver Nanowires: Synthesis Technologies, Growth Mechanism and Multifunctional Applications. Mater. Sci. Eng. 2017, 223, 1–23. [Google Scholar] [CrossRef]
- Langley, D.; Giusti, G.; Mayousse, C.; Celle, C.; Bellet, D.; Simonato, J.-P. Flexible Transparent Conductive Materials Based on Silver Nanowire Networks: A Review. Nanotechnology 2013, 24, 452001. [Google Scholar] [CrossRef]
- Hu, L.; Kim, H.S.; Lee, J.Y.; Peumans, P.; Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955–2963. [Google Scholar] [CrossRef]
- Kang, B.M.; Xu, T.; Park, H.J.; Luo, X.; Guo, L.J. Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes. Adv. Mater. 2010, 22, 4378–4383. [Google Scholar] [CrossRef]
- Van Hoof, N.; Parente, M.; Baldi, A.; Rivas, J.G. Terahertz TimeDomain Spectroscopy and Near-Field Microscopy of Transparent Silver Nanowire Networks. Adv. Opt. Mater. 2020, 8, 1900790. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, F.; Wu, B.; Lv, C.; Wu, M. A one-step synthesis of ultra-long silver nanowires with ultra-high aspect ratio above 2000 and its application in flexible transparent conductive electrodes. Nanotechnology 2021, 32, 105710. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, Y. Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires. Nanoscale 2014, 6, 2345–2352. [Google Scholar] [CrossRef]
- Hu, W.; Niu, X.; Zhao, R.; Pei, Q. Elastomeric Transparent Capacitive Sensors Based on an Interpenetrating Composite of Silver Nanowires and Polyurethane. Appl. Phys. Lett. 2013, 102, 083303. [Google Scholar] [CrossRef]
- Wang, J.; Jiu, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; He, P.; Suganuma, K. A Highly Sensitive and Flexible Pressure Sensor with Electrodes and Elastomeric Interlayer Containing Silver Nanowires. Nanoscale 2015, 7, 2926–2932. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, M.T.; Hao, C.J.; Zhao, Z.Q.; Yao, J.Q. Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid. IEEE Photonics J. 2014, 6, 1. [Google Scholar] [CrossRef]
- Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett. 2003, 3, 1229–1233. [Google Scholar] [CrossRef]
- Fahad, S.; Yu, H.; Wang, L.; Wang, Y.; Ali, T.E.M.; Amin, B.U.; Naveed, K.U.R.; Khan, R.U.; Mehmood, S.; Haq, F.; et al. Synthesis of corrugated surface AgNWs and their applications in surface enhanced Raman spectroscopy. CrystEngComm 2020, 22, 2183–2196. [Google Scholar] [CrossRef]
- Maijenburg, A.W.; Veerbeek, J.; De Putter, R.; Veldhuis, S.A.; Zoontjes, M.G.C.; Mul, G.; Montero-Moreno, J.M.; Nielsch, K.; Schafer, H.; Steinhart, M.; et al. Electrochemical Synthesis of Coaxial TiO2-Ag Nanowires and Their Application in Photocatalytic Water Splitting. J. Mater. Chem. A 2014, 2, 2648–2656. [Google Scholar] [CrossRef]
- Reddy, I.N.; Reddy, C.V.; Sreedhar, A.; Cho, M.; Kim, D.; Shim, J. Effect of Plasmonic Ag Nanowires on the Photocatalytic Activity of Cu Doped Fe2O3 Nanostructures Photoanodes for Superior Photoelectrochemical Water Splitting Applications. J. Electroanal. Chem. 2019, 842, 146–160. [Google Scholar] [CrossRef]
- Liu, L.; He, C.; Li, J.; Guo, J.; Yang, D.; Wei, J. Green synthesis of silver nanowires via ultraviolet irradiation catalyzed by phosphomolybdic acid and their antibacterial properties. New J. Chem. 2013, 37, 2179–2185. [Google Scholar] [CrossRef]
- Xu, J.; Hu, J.; Peng, C.; Liu, H.; Hu, Y. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J. Colloid Interface Sci. 2006, 298, 689–693. [Google Scholar] [CrossRef]
- Liu, R.; Wong, F.; Duan, W.; Sen, A. Synthesis and characterization of silver halide nanowires. Polyhedron 2014, 84, 192–196. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, S.H.; Wang, C.Y.; Li, X.G.; Zhu, Y.R.; Chen, Z.Y. A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites. Adv. Mater. 1999, 11, 850–852. [Google Scholar] [CrossRef]
- Castro, K.B.; Cooper, J.B. Single-pot two-temperature synthesis of high aspect ratio silver nanowires with narrow size distribution. Inorg. Chim. Acta 2020, 507, 119569. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, P.; Lee, D.; Lee, S.S.; Ko, S.H. Large-Scale Synthesisand Characterization of VeryLong Silver Nanowires via Successive Multistep Growth. Cryst. Growth Des. 2012, 12, 5598–5605. [Google Scholar] [CrossRef]
- Zhan, K.; Su, R.; Bai, S.; Yu, Z.; Cheng, N.; Wang, C.; Xu, S.; Liu, W.; Guo, S.; Zhao, X.-Z. One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe3+ & Cl− co-mediated polyol method and their application astransparent conductive films. Nanoscale 2016, 8, 18121–18133. [Google Scholar]
- Chen, Y.-C.; Hsu, J.-H.; Lin, Y.-G.; Hsu, Y.-K. Silver nanowires on coffee filter as dualsensing functionality for efficient and low-cost SERS substrate and electrochemical detection. Sens. Actuators B 2017, 245, 189–195. [Google Scholar] [CrossRef]
- Mayousse, C.; Celle, C.; Moreau, E.; Mainguet, J.F.; Carella, A.; Simonato, J.P. Improvements in Purification of Silver Nanowires by Decantation and Fabrication of Flexible Transparent Electrodes. Application to Capacitive Touch Sensors. Nanotechnology 2013, 24, 215501. [Google Scholar] [CrossRef]
- Li, B.; Ye, S.; Stewart, I.E.; Alvarez, S.; Wiley, B.J. Synthesis and Purification of Silver Nanowires to Make Conducting Films with a Transmittance of 99%. Nano Lett. 2015, 15, 6722–6726. [Google Scholar] [CrossRef]
- Wan, M.; Tao, J.; Jia, D.; Chu, X.; Li, S.; Ji, S.; Ye, C. High-Purity Very Thin Silver Nanowires Obtained by Ostwald Ripening-Driven Coarsening and Sedimentation of Nanoparticles. CrystEngComm 2018, 20, 2834–2840. [Google Scholar] [CrossRef]
- Parente, M.; van Helvert, M.; Haman, R.F.; Verbroekken, R.; Sinha, R.; Bieberle-Hütter, A.; Baldi, A. Simple and Fast High-Yield Synthesis of Silver Nanowires. Nano Lett. 2020, 20, 5759–5764. [Google Scholar] [CrossRef]
- Fan, Y.; Han, D.; Song, Z.; Sun, Z.; Dong, X.; Niu, L. Regulations of silver halide nanostructure and composites on photocatalysis. Adv. Compos. Hybrid Mater. 2018, 1, 269–299. [Google Scholar] [CrossRef]
- Welch, D.A.; Woehl, T.J.; Park, C.; Faller, R.; Evans, J.E.; Browning, N. Understandingthe Role of Solvation Forces on the Preferential Attachment of Nanoparticlesin Liquid. ACS Nano 2016, 10, 181–187. [Google Scholar] [CrossRef]
- Wang, T.; Antonietti, M.; Cölfen, H. Calcite mesocrystals: “Morphing” crystals by a polyelectrolyte. Chem.—Eur. J. 2006, 12, 5722–5730. [Google Scholar] [CrossRef]
- Yamamoto, E.G.; Dantas, M.P.; Yamanishi, G.; Soares, F.B.; Urbano, A.; Lourenço, S.A.; Cava, C.E. Silver nanowire synthesis analyzing NaCl, CuCl2, and NaBr as halide salt with additional thermal, acid, and solvent post-treatments for transparent and flexible electrode applications. Appl. Nanotechnol. 2022, 12, 205–213. [Google Scholar] [CrossRef]
- Ran, Y.; He, W.; Wang, K.; Ji, S.; Ye, C. A One-Step Route to Ag Nanowires with a Diameter below 40 nm and an Aspect Ratio above 1000. Chem. Commun. 2014, 50, 14877–14880. [Google Scholar] [CrossRef]
- Qian, F.; Lan, P.C.; Freyman, M.C.; Chen, W.; Kou, T.; Olson, T.Y.; Zhu, C.; Worsley, M.A.; Duoss, E.B.; Spadaccini, C.M.; et al. Ultralight Conductive Silver Nanowire Aerogels. Nano Lett. 2017, 17, 7171–7176. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Kim, W.J.; Hong, S.H.; Kim, J.E.; Suh, K.S. Ionic-liquid-assisted formation of silver nanowires. Angew. Chem. Int. Ed. 2009, 48, 3806–3809. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.J. Synthesis of CoPt nanorods in ionic liquids. Am. Chem. Soc. 2005, 127, 5316–5317. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Yu, H.; Wang, L.; Zain-ul-Abdin; Haroon, M.; Ullah, R.S.; Nazir, A.; Naveed, K.; Elshaarani, T.; Khan, A. Recent progress inthe synthesis ofsilver nanowires and their role asconducting materials. J. Mater. Sci. 2019, 54, 997–1035. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Gan, G.; Yu, X.; Li, J. A Method for Preparing AgNWs with Accelerated Seed–Wire Conversion Time. Metals 2023, 13, 738. https://doi.org/10.3390/met13040738
Tang X, Gan G, Yu X, Li J. A Method for Preparing AgNWs with Accelerated Seed–Wire Conversion Time. Metals. 2023; 13(4):738. https://doi.org/10.3390/met13040738
Chicago/Turabian StyleTang, Xianjie, Guoyou Gan, Xianglei Yu, and Junpeng Li. 2023. "A Method for Preparing AgNWs with Accelerated Seed–Wire Conversion Time" Metals 13, no. 4: 738. https://doi.org/10.3390/met13040738
APA StyleTang, X., Gan, G., Yu, X., & Li, J. (2023). A Method for Preparing AgNWs with Accelerated Seed–Wire Conversion Time. Metals, 13(4), 738. https://doi.org/10.3390/met13040738