Relevance of Environmental Factors in the Steel Life Cycle for a Transition toward Circular Sustainable Production and Consumption Systems: A Joint Bibliometric and Bibliographic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Research Base
2.2. Bibliometric Analysis Software
3. Results
3.1. Bibliometric Analysis
3.2. Keywords Analysis
3.3. Literature Content Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajdo, E.; Ibrahimbegovic, A.; Dolarevic, S. Buckling analysis of complex structures with refined model built of frame and shell finite elements. Coupled Syst. Mech. 2020, 9, 29–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Chen, K.; Xu, Z. Real Time Scanning-Modeling System for Architecture Design and Construction. Adv. Technol. Innov. 2020, 5, 248. [Google Scholar] [CrossRef]
- Ming, X.; Huang, J.C.; Li, Z. Materials-oriented integrated design and construction of structures in civil engineering—A review. Front. Struct. Civ. Eng. 2022, 16, 24–44. [Google Scholar] [CrossRef]
- Hauke, B.; Kuhnhenne, M.; Lawson, R.M.; Veljkovic, M. (Eds.) Sustainable Steel Buildings: A Practical Guide for Structures and Envelopes; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2016; ISBN 978-1-118-74079-8. [Google Scholar]
- Yang, F. (Ed.) Whole Building Life Cycle Assessment: Reference Building Structure and Strategies; American Society of Civil Engineers: Reston, VA, USA, 2018; ISBN 978-0-7844-1505-4. [Google Scholar]
- Wilkinson, P. Steel Ceiling. Navigating the Invisible Barrier to Sustainable Growth in Engineering and Construction; Wiley-Blackwell: Hoboken, NJ, USA, 2022; ISBN 978-1-119-91045-9. [Google Scholar]
- Liu, R.; Hu, X.; Ye, K.; Cao, K.; Zhu, W.; Zuo, J. Perspective Discrepancy between Designers and Constructors on the Sustainability of Steel Structures: Are They Synthesizable? Appl. Sci. 2021, 11, 7430. [Google Scholar] [CrossRef]
- Shang, Y.; Song, M.; Zhao, X. The development of China’s Circular Economy: From the perspective of environmental regulation. Waste Manag. 2022, 149, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Talens Peiró, L.; Polverini, D.; Ardente, F.; Mathieux, F. Advances towards circular economy policies in the EU: The new Ecodesign regulation of enterprise servers. Resour. Conserv. Recycl. 2020, 154, 104426. [Google Scholar] [CrossRef]
- Mueen Ahmed, K.K.; Bandar, E. Al Dhubaib Zotero: A bibliographic assistant to researcher. J. Pharmacol. Pharmacother. 2011, 2, 304–305. [Google Scholar] [CrossRef] [Green Version]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. SciMAT: A new science mapping analysis software tool. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1609–1630. [Google Scholar] [CrossRef]
- Mallett, A.; Pal, P. Green transformation in the iron and steel industry in India: Rethinking patterns of innovation. Energy Strategy Rev. 2022, 44, 100968. [Google Scholar] [CrossRef]
- Muslemani, H.; Liang, X.; Kaesehage, K.; Ascui, F.; Wilson, J. Opportunities and challenges for decarbonizing steel production by creating markets for ‘green steel’ products. J. Clean. Prod. 2021, 315, 128127. [Google Scholar] [CrossRef]
- Watari, T.; Nansai, K.; Nakajima, K. Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 2020, 155, 104669. [Google Scholar] [CrossRef]
- Zhao, J.; Zuo, H.; Wang, Y.; Wang, J.; Xue, Q. Review of green and low-carbon ironmaking technology. Ironmak. Steelmak. 2020, 47, 296–306. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Wang, S.; Liu, W. Numerical Simulation and Optimization of Waste Heat Recovery in a Sinter Vertical Tank. Energies 2019, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, S.; Ciais, P.; Zeng, Z.; Meng, J.; Zhang, Z. Decarbonising the iron and steel sector for a 2 °C target using inherent waste streams. Nat. Commun. 2022, 13, 297. [Google Scholar] [CrossRef]
- Li, Y.; Dai, W. Modifying hot slag and converting it into value-added materials: A review. J. Clean. Prod. 2018, 175, 176–189. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, C.; Gao, C.; Guo, Y.; Zhang, X.; Li, X. Exploration of a new path to reduce air pollutant emissions in the sinter plant of steelworks. J. Clean. Prod. 2022, 373, 133831. [Google Scholar] [CrossRef]
- Xia, Z.; Jiang, Z.; Zhang, X.; Li, Z.; Lu, Y.; He, Y.; Chen, J. The CO2 reduction potential for the oxygen blast furnace with CO2 capture and storage under hydrogen-enriched conditions. Int. J. Greenh. Gas Control 2022, 121, 103793. [Google Scholar] [CrossRef]
- Zaccara, A.; Petrucciani, A.; Matino, I.; Branca, T.A.; Dettori, S.; Iannino, V.; Colla, V.; Bampaou, M.; Panopoulos, K. Renewable Hydrogen Production Processes for the Off-Gas Valorization in Integrated Steelworks through Hydrogen Intensified Methane and Methanol Syntheses. Metals 2020, 10, 1535. [Google Scholar] [CrossRef]
- Tian, W.; An, H.; Li, X.; Li, H.; Quan, K.; Lu, X.; Bai, H. CO2 accounting model and carbon reduction analysis of iron and steel plants based on intra- and inter-process carbon metabolism. J. Clean. Prod. 2022, 360, 132190. [Google Scholar] [CrossRef]
- Perpiñán, J.; Bailera, M.; Romeo, L.; Peña, B.; Eveloy, V. CO2 Recycling in the Iron and Steel Industry via Power-to-Gas and Oxy-Fuel Combustion. Energies 2021, 14, 7090. [Google Scholar] [CrossRef]
- Dworak, S.; Fellner, J. Steel scrap generation in the EU-28 since 1946—Sources and composition. Resour. Conserv. Recycl. 2021, 173, 105692. [Google Scholar] [CrossRef]
- Dworak, S.; Rechberger, H.; Fellner, J. How will tramp elements affect future steel recycling in Europe?—A dynamic material flow model for steel in the EU-28 for the period 1910 to 2050. Resour. Conserv. Recycl. 2022, 179, 106072. [Google Scholar] [CrossRef]
- Schoeman, Y.; Oberholster, P.; Somerset, V. A decision-support framework for industrial waste management in the iron and steel industry: A case study in Southern Africa. Case Stud. Chem. Environ. Eng. 2021, 3, 100097. [Google Scholar] [CrossRef]
- Ajayebi, A.; Hopkinson, P.; Zhou, K.; Lam, D.; Chen, H.-M.; Wang, Y. Estimation of structural steel and concrete stocks and flows at urban scale–towards a prospective circular economy. Resour. Conserv. Recycl. 2021, 174, 105821. [Google Scholar] [CrossRef]
- Tan, J.; Wehde, M.V.; Brønd, F.; Kalvig, P. Traded metal scrap, traded alloying elements: A case study of Denmark and implications for circular economy. Resour. Conserv. Recycl. 2021, 168, 105242. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Archer, S.A.; Gomes, H.I.; Christgen, B.; Lag-Brotons, A.J.; Purnell, P. Circular economy and the matter of integrated resources. Sci. Total Environ. 2019, 689, 963–969. [Google Scholar] [CrossRef]
- Tazi, N.; Kim, J.; Bouzidi, Y.; Chatelet, E.; Liu, G. Waste and material flow analysis in the end-of-life wind energy system. Resour. Conserv. Recycl. 2019, 145, 199–207. [Google Scholar] [CrossRef]
- Hopkinson, P.; Chen, H.-M.; Zhou, K.; Wang, Y.; Lam, D. Recovery and reuse of structural products from end-of-life buildings. Proc. Inst. Civ. Eng.-Eng. Sustain. 2019, 172, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.T.M.; Diemer, A. Supply chain integration strategies and circularity in the European steel industry. Resour. Conserv. Recycl. 2020, 153, 104517. [Google Scholar] [CrossRef]
- Rieger, J.; Schenk, J. Residual Processing in the European Steel Industry: A Technological Overview. J. Sustain. Metall. 2019, 5, 295–309. [Google Scholar] [CrossRef]
- Fisher, L.V.; Barron, A.R. The recycling and reuse of steelmaking slags—A review. Resour. Conserv. Recycl. 2019, 146, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Desing, H.; Braun, G.; Hischier, R. Resource pressure—A circular design method. Resour. Conserv. Recycl. 2021, 164, 105179. [Google Scholar] [CrossRef]
- Rasmussen, F.; Birkved, M.; Birgisdóttir, H. Upcycling and Design for Disassembly—LCA of Buildings Employing Circular Design Strategies. In Proceedings of the BAMB-CIRCPATH “Buildings as Material Banks—A Pathway for A Circular Future”, Brussels, Belgium, 5–7 February 2019; Volume 225, p. 012040. [Google Scholar] [CrossRef]
- Walker, S.; Coleman, N.; Hodgson, P.; Collins, N.; Brimacombe, L. Evaluating the Environmental Dimension of Material Efficiency Strategies Relating to the Circular Economy. Sustainability 2018, 10, 666. [Google Scholar] [CrossRef] [Green Version]
- Basta, A.; Serror, M.H.; Marzouk, M. A BIM-based framework for quantitative assessment of steel structure deconstructability. Autom. Constr. 2020, 111, 103064. [Google Scholar] [CrossRef]
- Bieda, B. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) to the steel process chain: Case study. Sci. Total Environ. 2014, 481, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Bawden, K.R.; Williams, E.D.; Babbitt, C.W. Mapping product knowledge to life cycle inventory bounds: A case study of steel manufacturing. J. Clean. Prod. 2016, 113, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Na, H.; Yan, T.; Qiu, Z.; Yuan, Y.; He, J.; Li, Y.; Wang, Y.; Du, T. A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry. Energy 2021, 235, 121429. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, W.; Li, W.; Wang, Y. Physical and chemical characterization of fugitive particulate matter emissions of the iron and steel industry. Atmos. Pollut. Res. 2022, 13, 101272. [Google Scholar] [CrossRef]
- Lopez, G.; Farfan, J.; Breyer, C. Trends in the global steel industry: Evolutionary projections and defossilisation pathways through power-to-steel. J. Clean. Prod. 2022, 375, 134182. [Google Scholar] [CrossRef]
- Colla, V.; Pietrosanti, C.; Malfa, E.; Peters, K. Environment 4.0: How digitalization and machine learning can improve the environmental footprint of the steel production processes. Matériaux Tech. 2020, 108, 507. [Google Scholar] [CrossRef]
- Ramalho, A.; Santos, T.G.; Bevans, B.; Smoqi, Z.; Rao, P.; Oliveira, J.P. Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel. Addit. Manuf. 2022, 51, 102585. [Google Scholar] [CrossRef]
- Jozi, S.A.; Majd, N.M. Health, safety, and environmental risk assessment of steel production complex in central Iran using TOPSIS. Environ. Monit. Assess. 2014, 186, 6969–6983. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, M.; Zhou, Z.; Shen, W. An IoT-Based Online Monitoring System for Continuous Steel Casting. IEEE Internet Things J. 2016, 3, 1355–1363. [Google Scholar] [CrossRef]
- Girón, D.; Delgado, T.; Ruiz, J.; Cabalín, L.M.; Laserna, J.J. In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS. Measurement 2018, 115, 1–10. [Google Scholar] [CrossRef]
- Hren, M.; Kosec, T.; Lindgren, M.; Huttunen-Saarivirta, E.; Legat, A. Sensor Development for Corrosion Monitoring of Stainless Steels in H2SO4 Solutions. Sensors 2021, 21, 1449. [Google Scholar] [CrossRef]
- Xing, Z.; He, D.; Wang, H.; Ye, Z.; Yang, S. Electrochemical Corrosion Behaviour of Carbon Steel in Concrete with Metakaolin Admixture Exposed to Soil with High Concentration of Chloride Ions. Int. J. Electrochem. Sci. 2021, 16, 210310. [Google Scholar] [CrossRef]
- Shen, W.; Pang, Q.; Fan, L.; Li, P.; Zhao, X. Monitoring and quantification of non-uniform corrosion induced mass loss of steel piles with distributed optical fiber sensors. Autom. Constr. 2023, 148, 104769. [Google Scholar] [CrossRef]
- Chen, Q.; Wen, X.; Wu, F.; Yang, Y. Defect Detection and Health Monitoring of Steel Structure based on UAV Integrated with Image Processing System. J. Phys. Conf. Ser. 2019, 1176, 052074. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Sun, M.; Pan, D.; Huang, M.; Yan, B.; Zhou, Y.; Nie, P.; Zhou, T.; Zhao, Y. High-precision detection method for large and complex steel structures based on global registration algorithm and automatic point cloud generation. Measurement 2021, 172, 108765. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, B.; Weng, S.; Ni, Y.-Q.; Xu, Y.-L. Temperature effect on vibration properties of civil structures: A literature review and case studies. J. Civ. Struct. Health Monit. 2012, 2, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Fu, W.; Luo, Y.; Yun, C.-B.; Liu, D.; Yang, P.; Yang, G.; Zhou, G. Implementation of SHM system for Hangzhou East Railway Station using a wireless sensor network. Smart Struct. Syst. 2021, 27, 19–33. [Google Scholar] [CrossRef]
- Khan, M.A.; Akhtar, K.; Ahmad, N.; Shah, F.; Khattak, N. Vibration analysis of damaged and undamaged steel structure systems: Cantilever column and frame. Earthq. Eng. Eng. Vib. 2020, 19, 725–737. [Google Scholar] [CrossRef]
- Li, L.; Ohkubo, T.; Matsumoto, S. Vibration measurement of a steel building with viscoelastic dampers using acceleration sensors. Measurement 2021, 171, 108807. [Google Scholar] [CrossRef]
- Szabó, G.; Völgyi, I.; Kenéz, Á. Vibration Assessment of a New Danube Bridge at Komárom. Period. Polytech. Civ. Eng. 2022, 66, 1014–1022. [Google Scholar] [CrossRef]
- Kermeli, K.; Edelenbosch, O.Y.; Crijns-Graus, W.; van Ruijven, B.J.; van Vuuren, D.P.; Worrell, E. Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry. Energy 2022, 239, 122434. [Google Scholar] [CrossRef]
- Na, H.; Du, T.; Sun, W.; He, J.; Sun, J.; Yuan, Y.; Qiu, Z. Review of evaluation methodologies and influencing factors for energy efficiency of the iron and steel industry. Int. J. Energy Res. 2019, 43, 5659–5677. [Google Scholar] [CrossRef]
- Abraham, V.A.A.; Causil, E.D.A.; Santos, V.S.; Angarita, E.N.; Sarduy, J.R.G. Identification of savings opportunities in a steel manufacturing industry. Int. J. Energy Econ. Policy 2021, 11, 43–50. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Q.; Zhou, Y.; Wu, J. Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives. Appl. Energy 2020, 268, 114946. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; An, H.; Santagata, R.; Liu, X.; Ulgiati, S. Environmental and economic sustainability of key sectors in China’s steel industry chain: An application of the Emergy Accounting approach. Ecol. Indic. 2021, 129, 108011. [Google Scholar] [CrossRef]
- Feng, H.; Chen, L.; Liu, X.; Xie, Z.; Sun, F. Constructal optimization of a sinter cooling process based on exergy output maximization. Appl. Therm. Eng. 2016, 96, 161–166. [Google Scholar] [CrossRef]
- Vögele, S.; Grajewski, M.; Govorukha, K.; Rübbelke, D. Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development. Appl. Energy 2020, 264, 114633. [Google Scholar] [CrossRef]
- Vogl, V.; Åhman, M.; Nilsson, L.J. The making of green steel in the EU: A policy evaluation for the early commercialization phase. Clim. Policy 2021, 21, 78–92. [Google Scholar] [CrossRef]
- John, N.; Wesseling, J.H.; Worrell, E.; Hekkert, M. How key-enabling technologies’ regimes influence sociotechnical transitions: The impact of artificial intelligence on decarbonization in the steel industry. J. Clean. Prod. 2022, 370, 133624. [Google Scholar] [CrossRef]
- Cicconi, P.; Russo, A.C.; Germani, M.; Prist, M.; Pallotta, E.; Monteriu, A. Cyber-Physical System Integration for Industry 4.0: Modelling and Simulation of an Induction Heating Process for Aluminium-Steel Molds in Footwear Soles Manufacturing. In Proceedings of the 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy, 11–13 September 2017; IEEE: Modena, Italy, 2017; pp. 1–6. [Google Scholar]
- Marchiori, F.; Belloni, A.; Benini, M.; Cateni, S.; Colla, V.; Ebel, A.; Lupinelli, M.; Nastasi, G.; Neuer, M.; Pietrosanti, C.; et al. Integrated Dynamic Energy Management for Steel Production. Energy Procedia 2017, 105, 2772–2777. [Google Scholar] [CrossRef]
- Çetin, S.; De Wolf, C.; Bocken, N. Circular Digital Built Environment: An Emerging Framework. Sustainability 2021, 13, 6348. [Google Scholar] [CrossRef]
Variable Keyword | Papers on Scopus | Papers on Web of Science | Total Number of Papers |
---|---|---|---|
Circular economy | 155 | 197 | 352 |
Emission | 1508 | 592 | 2000 |
Indicator | 298 | 70 | 368 |
LCA | 258 | 269 | 527 |
Material flow | 96 | 130 | 226 |
Monitoring | 792 | 262 | 1054 |
Recycling | 737 | 571 | 1308 |
Reuse | 287 | 215 | 502 |
Total | 4131 | 2406 | 6437 |
Variable Keyword | Total Number of Papers |
---|---|
Emission | 174 |
Circular economy | 22 |
Environmental indicator | 7 |
Environmental monitoring | 5 |
Material flow | 29 |
Total | 237 |
Journal | Number of Papers |
---|---|
Journal of Cleaner Production | 371 |
Sustainability (Switzerland) | 182 |
Science of the Total Environment | 119 |
Resources, Conservation and Recycling | 108 |
Energies | 86 |
Environmental Science and Pollution Research | 82 |
Journal of Hazardous Materials | 62 |
Journal of Environmental Management | 54 |
Chemosphere | 53 |
Journal of Industrial Ecology | 43 |
Author | Number of Papers |
---|---|
Wang, Y. | 68 |
Li, Y. | 56 |
Zhang, Y. | 49 |
Wang, J. | 47 |
Zhang, X. | 47 |
Li, H. | 44 |
Zhang, J. | 40 |
Liu, X. | 35 |
Zhang, H. | 35 |
Li, J. | 34 |
Year | Number of Papers |
---|---|
2019 | 726 |
2020 | 821 |
2021 | 889 |
2022 | 911 |
2023 | 14 |
Keywords | Number of Papers |
---|---|
Recycling | 410 |
Carbon dioxide | 407 |
Life cycle assessment | 338 |
Environmental impact | 277 |
Emission control | 260 |
Environmental monitoring | 213 |
Greenhouse gases | 213 |
Sustainable development | 209 |
Performance | 179 |
Energy | 175 |
Air pollution | 162 |
Particulate matter | 162 |
Climate change | 151 |
Circular economy | 149 |
Risk assessment | 132 |
Energy efficiency | 128 |
Air pollutant | 126 |
Global warming | 124 |
Waste management | 123 |
Efficiency | 121 |
Carbon footprint | 118 |
Chemical composition | 105 |
Pollution | 100 |
Air quality | 98 |
Wastewater treatment | 98 |
Industrial emissions | 93 |
Source apportionment | 93 |
Atmospheric pollution | 92 |
Energy consumption | 92 |
Environmental management | 89 |
Material flow analysis | 89 |
Water pollutants | 86 |
Soil pollution | 60 |
Toxicity | 60 |
Carbon sequestration | 59 |
Pollutant removal | 58 |
Detection method | 56 |
Fossil fuels | 55 |
Contamination | 53 |
Monitoring | 53 |
Health risks | 52 |
Quantitative analysis | 52 |
Environmental policy | 51 |
Industrial ecology | 49 |
Water pollution | 48 |
Environmental protection | 46 |
Economic and social effect | 45 |
Mitigation | 45 |
Sewage | 44 |
Pollution control | 43 |
Environmental performance | 38 |
Low-carbon steel | 38 |
Decarbonization | 37 |
Landfill | 36 |
Effluents | 36 |
Sediments | 36 |
Sludge | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casazza, M.; Barone, F. Relevance of Environmental Factors in the Steel Life Cycle for a Transition toward Circular Sustainable Production and Consumption Systems: A Joint Bibliometric and Bibliographic Analysis. Metals 2023, 13, 592. https://doi.org/10.3390/met13030592
Casazza M, Barone F. Relevance of Environmental Factors in the Steel Life Cycle for a Transition toward Circular Sustainable Production and Consumption Systems: A Joint Bibliometric and Bibliographic Analysis. Metals. 2023; 13(3):592. https://doi.org/10.3390/met13030592
Chicago/Turabian StyleCasazza, Marco, and Fabrizio Barone. 2023. "Relevance of Environmental Factors in the Steel Life Cycle for a Transition toward Circular Sustainable Production and Consumption Systems: A Joint Bibliometric and Bibliographic Analysis" Metals 13, no. 3: 592. https://doi.org/10.3390/met13030592
APA StyleCasazza, M., & Barone, F. (2023). Relevance of Environmental Factors in the Steel Life Cycle for a Transition toward Circular Sustainable Production and Consumption Systems: A Joint Bibliometric and Bibliographic Analysis. Metals, 13(3), 592. https://doi.org/10.3390/met13030592