A Comprehensive Study of Sn-Ga2Te3-SnTe Amorphous Alloys: Glass Formation and Crystallization Kinetics
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Structure Analysis and Glass Forming Region
3.2. Thermal Analysis and Thermal Stability
3.3. Non-Isothermal Crystallization Kinetics
3.4. Activation Energy
3.5. Crystallization Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, B.; Yu, Y.; Cui, J.; Liu, X.; Xie, L.; Liao, J.; Zhang, Q.; Huang, Y.; Ning, S.; Jia, B.; et al. High-Entropy-Stabilized Chalcogenides with High Thermoelectric Performance. Science 2021, 371, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhou, Z.; Zhang, L.; Zhang, M.; Liaw, P.K.; Li, G.; Liu, R. Effects of Y, GdCu, and Al Addition on the Thermoelectric Behavior of CoCrFeNi High Entropy Alloys. Metals 2018, 8, 781. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Wang, D.; Liu, X.; Qin, Y.; Dong, J.-F.; Luo, J.; Li, J.-W.; Liu, W.; Tan, G.; Tang, X.; et al. Power Generation and Thermoelectric Cooling Enabled by Momentum and Energy Multiband Alignments. Science 2021, 373, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yan, Y.; Li, X.; Wang, X.; Li, J.; Chen, C.; Cao, F.; Sui, J.; Lin, X.; Liu, X.; et al. A Dual Role by Incorporation of Magnesium in YbZn2Sb2 Zintl Phase for Enhanced Thermoelectric Performance. Adv. Energy Mater. 2020, 10, 2001229. [Google Scholar] [CrossRef]
- Poon, S.J. Recent Advances in Thermoelectric Performance of Half-Heusler Compounds. Metals 2018, 8, 989. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chen, Z.; Nan, P.; Xiong, F.; Lin, S.; Zhang, X.; Chen, Y.; Chen, L.; Ge, B.; Pei, Y. Lattice Strain Advances Thermoelectrics. Joule 2019, 3, 1276–1288. [Google Scholar] [CrossRef]
- Yan, Q.; Kanatzidis, M.G. High-Performance Thermoelectrics and Challenges for Practical Devices. Nat. Mater. 2022, 21, 503–513. [Google Scholar] [CrossRef]
- Aryana, K.; Stewart, D.A.; Gaskins, J.T.; Nag, J.; Read, J.C.; Olson, D.H.; Grobis, M.K.; Hopkins, P.E. Tuning Network Topology and Vibrational Mode Localization to Achieve Ultralow Thermal Conductivity in Amorphous Chalcogenides. Nat. Commun. 2021, 12, 2817. [Google Scholar] [CrossRef]
- Hu, L.; Fang, Y.-W.; Qin, F.; Cao, X.; Zhao, X.; Luo, Y.; Repaka, D.V.M.; Luo, W.; Suwardi, A.; Soldi, T.; et al. High Thermoelectric Performance Enabled by Convergence of Nested Conduction Bands in Pb7Bi4Se13 with Low Thermal Conductivity. Nat. Commun. 2021, 12, 4793. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, L.; Wu, D.; Bo, L. Thermoelectric Properties of Cu2SnSe3-Based Composites Containing Melt-Spun Cu-Te. Metals 2019, 9, 971. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Fu, Y.; Gu, H.; Lin, C. Chalcogenide Glass for Thermoelectric Application. J. Non-Cryst. Solids X 2022, 15, 100111. [Google Scholar]
- Zhang, H.; Zhang, Y.; Yu, P.; Wang, L.-M.; Li, G. Preparation and Thermoelectric Properties of Novel Tellurium-Based Glassy Semiconductors. Scr. Mater. 2021, 203, 114038. [Google Scholar] [CrossRef]
- Lucas, P.; Conseil, C.; Yang, Z.; Hao, Q.; Cui, S.; Boussard-Pledel, C.; Bureau, B.; Gascoin, F.; Caillaud, C.; Gulbiten, O.; et al. Thermoelectric Bulk Glasses Based on the Cu-As-Te-Se system. J. Mater. Chem. A 2013, 1, 8917–8925. [Google Scholar] [CrossRef]
- Vaney, J.-B.; Carreaud, J.; Morin, C.; Delaizir, G.; Piarristeguy, A.; Colas, M.; Cornette, J.; Le Parc, R.; Alleno, E.; Monnier, J.; et al. Thermoelectric Properties and Stability of Glasses in the Cu-As-Te System. J. Am. Ceram. Soc. 2017, 100, 2840–2851. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Liu, L.; Jiang, Y.; Feng, J.; Zhu, W.; Zhang, J.; Dong, Z.; Deng, Y.; Luo, J.; et al. Semiconductor Glass with Superior Flexibility and High Room Temperature Thermoelectric Performance. Sci. Adv. 2020, 6, 8423–8431. [Google Scholar]
- Alharbi, S.R.; Aly, K.A. Electrical and Thermoelectric Properties of Ternary Cu-Ge-Te Films. J. Alloys Compd. 2019, 797, 710–716. [Google Scholar] [CrossRef]
- Ashraf, M.W.; Haider, S.I.; Solangi, A.R.; Memon, A.F. Toxicity of Tellurium and Its Compounds. Phys. Sci. Rev. 2022, 5, 112. [Google Scholar] [CrossRef]
- Zare, B.; Nami, M.; Shahverdi, A.-R. Tracing Tellurium and Its Nanostructures in Biology. Biol. Trace Elem. Res. 2017, 180, 171–181. [Google Scholar] [CrossRef]
- Zhao, W.; Li, G.; Wang, Y.Y.; Feng, S.D.; Qi, L.; Ma, M.Z.; Liu, R.P. Atomic Bond Proportions and Relations to Physical Properties in Metallic Glasses. Mater. Des. 2015, 65, 1048–1052. [Google Scholar] [CrossRef]
- Ge, Y.; Cheng, J.; Yan, C.; Xue, L.; Zhang, B.; Liang, X. Devitrification and Sliding Wear Behaviors of AlFeSi Metallic Glass Coatings. J. Mater. Res. Technol. 2021, 15, 7022–7032. [Google Scholar] [CrossRef]
- Chen, F.; Han, K.; Gao, M.; Zhang, Y.; Xu, W.; Huo, J.; Zhang, C.; Song, L.; Wang, J.-Q. Magnetocaloric Properties of Melt-Extracted Gd-Co-Al Amorphous/Crystalline Composite Fiber. Metals 2022, 12, 1367. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Y.Y.; Liu, R.P.; Li, G. High Compressibility of Rare Earth-Based Bulk Metallic Glasses. Appl. Phys. Lett. 2013, 102, 031903. [Google Scholar] [CrossRef]
- Hua, N.; Liao, Z.; Wang, Q.; Zhang, L.; Ye, Y.; Brechtl, J.; Liaw, P.K. Effects of Crystallization on Mechanical Behavior and Corrosion Performance of a Ductile Zr68Al8Ni8Cu16 Bulk Metallic Glass. J. Non-Cryst. Solids 2020, 529, 119782. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, S.-X.; Jia, Z.; Zhang, W.; Wang, W.; Zhang, L.-C. Efficient Nanostructured Heterogeneous Catalysts by Electrochemical Etching of Partially Crystallized Fe-Based Metallic Glass Ribbons. J. Mater. Sci. Technol. 2021, 61, 159–168. [Google Scholar] [CrossRef]
- Zhao, W.; Cheng, J.L.; Li, G. Quantitative Analysis of Structure Evolution of Zr-Cu Amorphous Alloys Caused by Cooling Rates Based on Atomic Bond Proportion. Comput. Mater. Sci. 2021, 186, 110011. [Google Scholar] [CrossRef]
- Wang, C.; Yao, G.; Liu, J.; Mao, Y.; Leng, W.; Chen, Y.; Shen, X.; Wang, J.-Q.; Wang, R. Effects of Ca Doping on the Crystallization Kinetics of GeTe. Appl. Phys. Lett. 2021, 118, 211904. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, M.; Ma, M.; Cao, X.; He, Y.; Wang, W.; Luo, J. Influence of Annealing on the Tribological Properties of Zr-Based Bulk Metallic Glass. J. Non-Cryst. Solids 2018, 481, 94–97. [Google Scholar] [CrossRef]
- Zhao, W.; Cheng, J.L.; Cheng, H.; Li, G. Effect of Low-Temperature Annealing on the Structure and Mechanical Properties of Zr-Cu Metallic Glasses. Mater. Sci. Eng. A 2016, 673, 239–242. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Lotnyk, A.; Shi, H.; Chen, C. High Thermoelectric Performance in ZnSb-SnTe Pseudo-Binary Materials. Scr. Mater. 2021, 194, 113670. [Google Scholar] [CrossRef]
- Vaney, J.-B.; Carreaud, J.; Piarristeguy, A.; Morin, C.; Delaizir, G.; Viennois, R.; Colas, M.; Cornette, J.; Alleno, E.; Monnier, J.; et al. Stabilization of Metastable Thermoelectric Crystalline Phases by Tuning the Glass Composition in the Cu-As-Te System. Inorg. Chem. 2018, 57, 754–767. [Google Scholar] [CrossRef]
- Vaney, J.B.; Delaizir, G.; Alleno, E.; Rouleau, O.; Piarristeguy, A.; Monnier, J.; Godart, C.; Ribes, M.; Escalier, R.; Pradel, A.; et al. A Comprehensive Study of the Crystallization of Cu-As-Te glasses: Microstructure and thermoelectric properties. J. Mater. Chem. A 2013, 1, 8190–8200. [Google Scholar] [CrossRef]
- Jung, C.; Dutta, B.; Dey, P.; Jeon, S.; Han, S.; Lee, H.-M.; Park, J.-S.; Yi, S.-H.; Choi, P.-P. Tailoring Nanostructured NbCoSn-Based Thermoelectric Materials via Crystallization of an Amorphous Precursor. Nano Energy 2021, 80, 105518. [Google Scholar] [CrossRef]
- Yang, Z.; He, X.; Ning, Z.; Zhang, K.B.; Luo, F.; Li, C.C.; Ma, S.F.; Wei, P.; Zhao, W.Y.; Sun, Z.G.; et al. Effect of Nanocrystallization of Magnetic Amorphous Ribbon on Thermoelectric and Magnetic Properties. J. Non-Cryst. Solids 2020, 535, 119990. [Google Scholar] [CrossRef]
- Gonçalves, A.P.; Lopes, E.B.; Rouleau, O.; Godart, C. Conducting Glasses as New Potential Thermoelectric Materials: The Cu-Ge-Te Case. J. Mater. Chem. 2010, 20, 1516–1521. [Google Scholar]
- Gonçalves, A.P.; Lopes, E.B.; Delaizir, G.; Vaney, J.B.; Lenoir, B.; Piarristeguy, A.; Pradel, A.; Monnier, J.; Ochin, P.; Godart, C. Semiconducting Glasses: A New Class of Thermoelectric Materials? J. Solid State Chem. 2012, 193, 26–30. [Google Scholar]
- Yang, Z.; Wilhelm, A.A.; Lucas, P. High-Conductivity Tellurium-Based Infrared Transmitting Glasses and Their Suitability for Bio-Optical Detection. J. Am. Ceram. Soc. 2010, 93, 1941–1944. [Google Scholar] [CrossRef]
- Hu, H.; Zeng, H.; Li, L.; Wang, Y.; Guo, Y.; Jiang, Y.; Sun, L.; Chen, G. Crystallization Behaviors of Glasses in the (Ge5Sb25Se70)1−XAgx System. Ceram. Int. 2019, 45, 15073–15076. [Google Scholar] [CrossRef]
- Zheng, J.; Li, L.; Yin, H.; Wang, Y.; Wei, J.; Zeng, H.; Xia, F. Guorong Chen Mutual Effects of Ag Doping and Non-Stoichiometric Glass Forming Units on the Structural, Thermal, and Electrical Properties of Ag30+xAs28−xSe21Te21 chalcogenide glasses. Ceram. Int. 2020, 46, 22826–22830. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Gao, P.; Tu, W.; Wang, L.-M. Non-Isothermal Crystallization Kinetics of Ga-Sn-Te Chalcogenide Glasses by Differential Scanning Calorimetry. J. Mater. Sci. 2017, 52, 2924–2933. [Google Scholar] [CrossRef]
- Abd-Elrahman, M.I.; Hafiz, M.M.; Abdelraheem, A.M.; Abu-Sehly, A.A. Effect of Sn Additive on the Structure and Crystallization Kinetics in Ge-Se Alloy. J. Alloys Compd. 2016, 675, 1–7. [Google Scholar] [CrossRef]
- Lasocka, M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater. Sci. Eng. 1975, 23, 173–177. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in Differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. 1970, 2, 301–324. [Google Scholar] [CrossRef]
- Ahmad, M.; Aly, K.A.; Dahshan, A.; Saddeek, Y.; Zakaly, H.M.H.; Elnaeim, A.M.A.; Ene, A. Physical Characterization and Crystallization Kinetics of Amorphous BiSe Chalcogenide Glasses. J. Mater. Res. Technol. 2022, 16, 1114–1121. [Google Scholar] [CrossRef]
- Dong, Q.; Song, P.; Tan, J.; Qin, X.M.; Li, C.J.; Gao, P.; Feng, Z.X.; Calin, M.; Eckert, J. Non-Isothermal Crystallization Kinetics of a Fe-Cr-Mo-B-C Amorphous Powder. J. Alloys Compd. 2020, 823, 153783. [Google Scholar] [CrossRef]
- Xu, X.; Cui, J.; Yu, Y.; Zhu, B.; Huang, Y.; Xie, L.; Wu, D.; He, J. Constructing van Der Waals Gaps in Cubic-Structured SnTe-Based Thermoelectric Materials. Energy Environ. Sci. 2020, 13, 5135–5142. [Google Scholar] [CrossRef]
- An, D.; Wang, J.; Zhang, J.; Zhai, X.; Kang, Z.; Fan, W.; Yan, J.; Liu, Y.; Lu, L.; Jia, C.-L.; et al. Retarding Ostwald Ripening through Gibbs Adsorption and Interfacial Complexions Leads to High-Performance SnTe Thermoelectrics. Energy Environ. Sci. 2021, 14, 5469–5479. [Google Scholar] [CrossRef]
Samples | Composition | Tg (K) | Tc (K) | Tp1(K) | Tp2 (K) | ΔT (K) |
---|---|---|---|---|---|---|
S2 | [(Ga2Te3)34(SnTe)66]98-Sn2 | 502 | 535 | 548 | - | 33 |
S4 | [(Ga2Te3)34(SnTe)66]96-Sn4 | 499 | 529 | 537 | 547 | 30 |
S6 | [(Ga2Te3)34(SnTe)66]94-Sn6 | 494 | 522 | 529 | 546 | 28 |
S8 | [(Ga2Te3)34(SnTe)66]92-Sn8 | 488 | 514 | 525 | 545 | 26 |
S10 | [(Ga2Te3)34(SnTe)66]90-Sn10 | 481 | 504 | 514 | 543 | 23 |
Heating Rate (K/min) | [(Ga2Te3)34(SnTe)66]92-Sn8 | ||||
---|---|---|---|---|---|
Tg (K) | Tc (K) | Tp1 (K) | Tp2 (K) | ΔT (K) | |
10 | 482 | 508 | 518 | 539 | 26 |
20 | 488 | 514 | 525 | 545 | 26 |
25 | 491 | 518 | 527 | 547 | 27 |
30 | 492 | 520 | 528 | 549 | 28 |
Activation Energy (kJ mol−1) | ||||
---|---|---|---|---|
Equation | Eg | Ec | Ep1 | Epi |
Kissinger | 201.1 ± 11.6 | 188.7 ± 10.7 | 229.8 ± 13.9 | 264.2 ± 7.3 |
Ozawa | 209.6 ± 12.3 | 198.3 ± 6.9 | 240.1 ± 14.7 | 272.6 ± 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, Y.; Li, G. A Comprehensive Study of Sn-Ga2Te3-SnTe Amorphous Alloys: Glass Formation and Crystallization Kinetics. Metals 2023, 13, 532. https://doi.org/10.3390/met13030532
Zhang H, Zhang Y, Li G. A Comprehensive Study of Sn-Ga2Te3-SnTe Amorphous Alloys: Glass Formation and Crystallization Kinetics. Metals. 2023; 13(3):532. https://doi.org/10.3390/met13030532
Chicago/Turabian StyleZhang, Huan, Yaqi Zhang, and Gong Li. 2023. "A Comprehensive Study of Sn-Ga2Te3-SnTe Amorphous Alloys: Glass Formation and Crystallization Kinetics" Metals 13, no. 3: 532. https://doi.org/10.3390/met13030532
APA StyleZhang, H., Zhang, Y., & Li, G. (2023). A Comprehensive Study of Sn-Ga2Te3-SnTe Amorphous Alloys: Glass Formation and Crystallization Kinetics. Metals, 13(3), 532. https://doi.org/10.3390/met13030532