Influence of the Grain-Flow Orientation after Hot Forging Process Evaluated through Rotational Flexing Fatigue Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Fatigue Life
2.1.1. Modifying Factors
2.1.2. Stress Concentrator and Notch Sensitivity
3. Experimental Campaign
- Configuration A (Figure 1): simulated a forged component with its proper orientation because its fibers were arranged along the longitudinal direction of the specimen, that is, at 0° from the rolling direction;
- Configuration B (Figure 2): simulated a forged component with its orientation nonadequate because its fibers were arranged along the cross direction of the specimen, that is, at 90° from the rolling direction;
- Configuration C (Figure 3): simulated an unwrought component machined straight from the bar, so its rolling fibers were in the longitudinal direction, that is, 0° from the rolling direction but cut.
3.1. Sample Fabrication Process
3.2. Metallographic Testing
3.3. Fatigue Test
3.4. Theoretical Fatigue Life Calculation
4. Results
4.1. Fatigue Test Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davoudi, M.; Nejad, A.F.; Koloor, S.S.R.; Petru, M. Investigation of effective geometrical parameters on wear of hot forging die. J. Mater. Res. Technol. 2021, 15, 5221–5231. [Google Scholar] [CrossRef]
- Pandya, V.A.; George, P.M. Effect of preform design on forging load and effective stress during closed die hot forging process of pin. Mater. Today Proc. 2020, 44, 106–112. [Google Scholar] [CrossRef]
- Razali, M.K.; Kim, S.W.; Irani, M.; Kim, M.C.; Joun, M.S. Practical quantification of the effects of flow stress, friction, microstructural properties, and the tribological environment on macro- and micro-structure formation during hot forging. Tribol. Int. 2021, 164, 107226. [Google Scholar] [CrossRef]
- D’Addona, D.M.; Antonelli, D. Application of numerical simulation for the estimation of die life after repeated hot forging work cycles. Procedia CIRP 2019, 79, 632–637. [Google Scholar] [CrossRef]
- Emamverdian, A.A.; Sun, Y.; Chunping, C. Deformation and wear in a H21 (3Cr2W8V) steel die during hot forging: Simulation, mechanical properties, and microstructural evolution. J. Mater. Res. Technol. 2021, 15, 268–277. [Google Scholar] [CrossRef]
- Zhuang, W.; Han, X.; Hua, L.; Xu, M.; Chen, M. FE prediction method for tooth variation in hot forging of spur bevel gears. J. Manuf. Process. 2019, 38, 244–255. [Google Scholar] [CrossRef]
- Ghalehbandi, S.; Biglari, F. Predicting damage and failure under thermomechanical fatigue in hot forging tools. Eng. Fail. Anal. 2020, 113, 104545. [Google Scholar] [CrossRef]
- Rajiev, R.; Sadagopan, P. Simulation and Analysis of hot forging dies for Pan Head bolt and insert component. Mater. Today Proc. 2018, 5, 7320–7328. [Google Scholar] [CrossRef]
- Dai, W.; Yao, Z.; Zhang, H.; Li, C.; Liu, Y.; Zhang, Y. Effect of forging ratio on tensile properties and fatigue performance of EA4T steel. J. Manuf. Process. 2022, 76, 291–303. [Google Scholar] [CrossRef]
- Da Costa, P.R.; Soares, H.; Reis, L.; De Freitas, M. Tension/torsion ultrasonic fatigue testing on a railway wheel. Procedia Struct. Integr. 2020, 25, 445–453. [Google Scholar] [CrossRef]
- Almaraz, G.D.; Vilchez, J.R.; Dominguez, A. Ultrasonic fatigue on the automotive steels: AISI/SAE 4140T and 1045. Procedia Struct. Integr. 2019, 18, 594–599. [Google Scholar] [CrossRef]
- Wu, H.; Bill, T.; Teng, Z.; Pramanik, S.; Hoyer, K.-P.; Schaper, M.; Starke, P. Characterization of the fatigue behaviour for SAE 1045 steel without and with load-free sequences based on non-destructive, X-ray diffraction and transmission electron microscopic investigations. Mater. Sci. Eng. A 2020, 794, 139597. [Google Scholar] [CrossRef]
- Chastel, Y.; Caillet, N.; Bouchard, P.-O. Quantitative analysis of the impact of forging operations on fatigue properties of steel components. J. Mater. Process. Technol. 2006, 177, 202–205. [Google Scholar] [CrossRef]
- Navas, V.G.; Gonzalo, O.; Quintana, I.; Pirling, T. Residual stresses and structural changes generated at different steps of the manufacturing of gears: Effect of banded structures. Mater. Sci. Eng. A 2011, 528, 5146–5157. [Google Scholar] [CrossRef]
- Pessard, E.; Morel, F.; Bellett, D.; Morel, A. A new approach to model the fatigue anisotropy due to non-metallic inclusions in forged steels. Int. J. Fatigue 2012, 41, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Yu, L.-L.; Liu, X.-G.; Guo, B.-F. High temperature stress–strain curves of MnS and their applications in finite element simulation. Trans. Nonferrous Met. Soc. China 2018, 28, 2082–2093. [Google Scholar] [CrossRef]
- Pessard, E.; Morel, F.; Verdu, C.; Flacelière, L.; Baudry, G. Microstructural heterogeneities and fatigue anisotropy of forged steels. Mater. Sci. Eng. A 2011, 529, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.D. Metallurgical integrity for economic production of quality steel forgings for advanced applications. Mater. Today Proc. 2020, 39, 1434–1439. [Google Scholar] [CrossRef]
- Cyril, N.S.; Fatemi, A. Experimental evaluation and modeling of sulfur content and anisotropy of sulfide inclusions on fatigue behavior of steels. Int. J. Fatigue 2009, 31, 526–537. [Google Scholar] [CrossRef]
- Bresciani, E.; Silva, I.B.; Batalha, G.F.; Button, S.T. Conformação Plástica de Metais–Edição Digital; EPUSP: São Paulo, Brazil, 2011; ISBN 978-85-86686-64-1. [Google Scholar]
- Schaefer, L. Conformação Mecânica; Imprensa Livre: Porto Alegre, RS, Brazil, 1999; ISBN 85-86647-13-6. [Google Scholar]
- Budynas, R.G.; Nisbett, J.K.; Shigley, J.E. Shigley’s Mechanical Engineering Design, 9th ed.; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Saalfeld, S.; Scholtes, B.; Niendorf, T. On the influence of overloads on the fatigue performance of deep rolled steel SAE 1045. Int. J. Fatigue 2019, 126, 221–230. [Google Scholar] [CrossRef]
- DIN EN 10243-1; Steel die Forging—Tolerances on Dimensions. Deutscheus Institut Für Normung (DIN): Berlin, Germany, 2000.
Surface Finish | Coefficient a (MPa) | Exponent b |
---|---|---|
Corrected | 1.58 | −0.085 |
Machined or cold drawn | 4.51 | −0.265 |
Hot rolled | 57.7 | −0.718 |
Forged | 272.0 | −0.995 |
Reliability (%) | |
---|---|
50 | 1.000 |
90 | 0.897 |
95 | 0.868 |
99 | 0.814 |
99.9 | 0.753 |
99.99 | 0.702 |
99.999 | 0.659 |
99.9999 | 0.620 |
Attribute | (MPa) |
---|---|
Cross Hole | 174/ |
Shoulder | 139/ |
Split | 104/ |
Configuration | Flow of Operations | |||
---|---|---|---|---|
Cutting the Blanks | Blank Machining | Forging of Workpieces | Machining of CPs | |
A | X (Ø 39.69) | - | X (Ø 39.69) | X |
B | X (Ø 69.85) | X (Ø 39.69) | X (Ø 39.69) | X |
C | X (Ø 69.85) | - | - | X |
Input Data | |
---|---|
Material | SAE 1045 H |
Friction factor | 0.35 |
Heating temperature | 1200 °C |
Colling time air | 3 s |
Contact time with die | 5 s |
Equipment | Mechanical press—10 MN |
Fiber Configuration | Workpiece No. | Cycles | Average | Standard Deviation |
---|---|---|---|---|
A | 1 | 21,000 | 24,400 | 5176 |
2 | 20,000 | |||
3 | 23,000 | |||
4 | 33,000 | |||
5 | 25,000 | |||
B | 6 | 17,500 | 10,500 | 7357 |
7 | 5500 | |||
8 | 2500 | |||
9 | 8000 | |||
10 | 19,000 | |||
C | 11 | 9500 | 11,400 | 6076 |
12 | 2500 | |||
13 | 19,000 | |||
14 | 12,000 | |||
15 | 14,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suris, J.A.; Yurgel, C.C.; Alves de Sousa, R. Influence of the Grain-Flow Orientation after Hot Forging Process Evaluated through Rotational Flexing Fatigue Test. Metals 2023, 13, 187. https://doi.org/10.3390/met13020187
Suris JA, Yurgel CC, Alves de Sousa R. Influence of the Grain-Flow Orientation after Hot Forging Process Evaluated through Rotational Flexing Fatigue Test. Metals. 2023; 13(2):187. https://doi.org/10.3390/met13020187
Chicago/Turabian StyleSuris, Jaques Araripe, Charles Chemale Yurgel, and Ricardo Alves de Sousa. 2023. "Influence of the Grain-Flow Orientation after Hot Forging Process Evaluated through Rotational Flexing Fatigue Test" Metals 13, no. 2: 187. https://doi.org/10.3390/met13020187
APA StyleSuris, J. A., Yurgel, C. C., & Alves de Sousa, R. (2023). Influence of the Grain-Flow Orientation after Hot Forging Process Evaluated through Rotational Flexing Fatigue Test. Metals, 13(2), 187. https://doi.org/10.3390/met13020187