Development of a Multimaterial Structure Based on CuAl9Mn2 Bronze and Inconel 625 Alloy by Double-Wire-Feed Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Diffraction Analysis
3.2. Microstructure Analysis
3.3. Mechanical Properties
3.4. Tribological Characteristics
4. Discussion
5. Conclusions
- In the manufacture of multimaterials based on aluminum–manganese bronze CuAl9Mn2 and nickel-based superalloy Inconel 625 by double-wire-feed electron beam additive manufacturing, increasing the content of Nu-alloy up to 25% leads to an increase in the number of particles of phases based on the Ni-Al, Mo-Nb, Ni-Cr, and Mo-Cr systems in the bronze matrix. At the same time, the character of structure formation does not undergo significant changes. A further increase in the content of the nickel-based alloy up to 50% leads to the formation of a dendritic structure characteristic of Inconel 625.
- Samples with 50% of nickel-based alloy in the composition of the bronze-based multimaterial show worse ductility and unstable ultimate tensile strength values when tested along the layer deposition direction and the wall growth direction. The wear resistance of the samples of this composition is also poor compared with 5, 15, and 25% of Ni-alloy.
- Tribological characteristics of multimaterials with 5, 15, and 25 % nickel alloy demonstrate close values of friction coefficient in the range from 0.425 to 0.475; herewith, strength characteristics of the materials differ considerably: 519–525 MPa for 5 %, 560–584 MPa for 15 %, and 794–824 MPa for 25 %. This makes it possible to vary the ratio of nickel-based alloy in the multimaterial composition in different parts of the product with the preservation of wear resistance.
- Produced compositions of multimaterials using Inconel 625 as a modifying material demonstrate superiority compared with the similar composite material based on Udimet 500 in terms of wear resistance and strength characteristics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamidah, I.; Solehudin, A.; Hamdani, A.; Hasanah, L.; Khairurrijal, K.; Kurniawan, T.; Mamat, R.; Maryanti, R.; Nandiyanto, A.B.D.; Hammoutie, B. Corrosion of copper alloys in KOH, NaOH, NaCl, and HCl electrolyte solutions and its impact to the mechanical properties. Alex. Eng. J. 2021, 60, 2235–2243. [Google Scholar] [CrossRef]
- Saha, B.; Nimbalkar, V.; Anant Sagar, D.B.; Sai Krishna Rao, M.; Deshmukh, V.P. Bronzes for Aerospace Applications. In Aerospace Materials and Material Technologies, 1st ed.; Eswara Prasad, N., Wanhill, R.J.H., Eds.; Indian Institute of Metals Series: Calcutta, India, 2017; Volume 1, pp. 247–266. [Google Scholar]
- Osipovich, K.S.; Vorontsov, A.V.; Zhukov, L.L. Structure and mechanical properties of polymetallic samples from 321 stainless steel and C11000 copper obtained by the electron-beam 3D-printing. AIP Conf. Proc. 2019, 2167, 020256. [Google Scholar]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Chumaevskii, A.V.; Kalashnikov, K.N.; Gusarova, A.V. The Regularities of Structure Formation during Friction Stir Processing of Bimetallic Materials Based on Copper and Aluminum Alloys. IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 052022. [Google Scholar] [CrossRef]
- Arasappan, R.K.; Subramaniyan, M.K.; Pramod, R.; Siva Shanmugam, N.; Murugesan, V.; Channabasavanna, S.G. Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing. Mater. Lett. 2022, 308, 131262. [Google Scholar]
- Marenych, O.; Kostryzhev, A.; Shen Ch Pan, Z.; Li, H.; van Duin, S. Precipitation Strengthening in Ni–Cu Alloys Fabricated Using Wire Arc Additive Manufacturing Technology. Metals 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Ezuber, H.; Al Shater, A.; Murra, F.; Al-Shamri, N. Corrosion Behavior of Copper-Nickel Alloys in Seawater Environment. In Proceedings of the 16th Middle East Corrosion Conference & Exhibition, Manama, Bahrain, 8–11 February 2016. [Google Scholar]
- Kulkarni, M.V.; Vergis, B.R.; Sampathkumaran, P.; Seetharamu, S. Copper nickel alloys made using direct metal laser sintering method for assessing corrosion resistance properties. Mater. Today Proc. 2022, 49, 703–713. [Google Scholar]
- Special Metals INCONEL® Alloy 625. Available online: http://Asm.matweb.com/search/SpecificMaterial.asp?bassnum=NINC33 (accessed on 22 September 2022).
- INCONEL® Alloy 625. Available online: http://Specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-625.pdf (accessed on 22 September 2022).
- Wang, Y.; Konovalov, S.; Chen, X.; Arvind Singh, R.; Jayalakshmi, S. Research on plasma arc additive manufacturing of Inconel 625 Ni–Cu functionally graded materials. Mater. Sci. Eng. A 2022, 583, 143796. [Google Scholar] [CrossRef]
- Nikolaychuk, P.A.; Tyurin, A.G. Thermodynamics of Chemical and Electrochemical Stability of Copper–Nickel Alloys. Prot. Met. Phys. Chem. Surf. 2012, 48, 462–476. [Google Scholar] [CrossRef]
- Lee, W.-H.; Chung, K.C. Investigation of a copper–nickel alloy resistor using co-electrodeposition. J. Appl. Electrochem. 2020, 50, 535–547. [Google Scholar] [CrossRef]
- Kalashnikova, T.A.; Panfilov, A.O.; Gusarova, A.V.; Knyazhev, E.O.; Kalashnikov, K.N.; Nikonov, S.Y. The Formation of Bimetallic Materials by the Electron-Beam Additive Manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1079, 042014. [Google Scholar]
- Mbodj, N.G.; Plapper, P. Bead Width Prediction in Laser Wire Additive Manufacturing Process. Appl. Sci. 2021, 11, 11949. [Google Scholar] [CrossRef]
- Kolubaev, E.A.; Rubtsov, V.E.; Chumaevsky, A.V.; Astafurova, E.G. Scientific Approaches to Micro-, Meso- and Macrostructural Design of Bulk Metallic and Polymetallic Materials by Wire-Feed Electron-Beam Additive Manufacturing. Phys. Mesomech. 2022, 25, 5–18. [Google Scholar]
- Pixner, F.; Buzolin, R.; Warchomicka, F.; Pilz, A.; Enzingera, N. Wire-based electron beam additive manufacturing of tungsten. Int. J. Refract. Met. Hard Mater. 2022, 108, 105917. [Google Scholar] [CrossRef]
- Toursangsaraki, M. A Review of Multi-material and Composite Parts Production by Modified Additive Manufacturing Methods. J. Mater. Res. 2018, 33, 1–25. [Google Scholar]
- Mounchili, A.P.; Bosse, S.; Bosse, S.; Struss, A. Putting Stiffness where it’s needed: Optimizing the Mechanical Response of Multi-Material Structures. MATEC Web Conf. 2021, 349, 03001. [Google Scholar] [CrossRef]
- Fuchs, J.; Schneider, C.; Enzinger, N. Wire-based additive manufacturing using an electron beam as heat source. Weld. World 2018, 62, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Davlyatshin, R.P.; Gerasimov, R.M.; Bayandin, Y.V.; Saucedo-Zendejo, F.R.; Trushnikov, D.N. Simulation of the multi-beam electron-beam wire-feed additive manufacturing process in a vacuum. J. Phys. Conf. Ser. 2022, 2275, 012006. [Google Scholar] [CrossRef]
- Liu, Y.; Du, A.; Zhou, G.; Liu, J. Metal Powder and Wire Additive Manufacturing Technology. In Proceedings of the 2nd International Conference on Applied Chemistry and Industrial Catalysis, Dalian, China, 16–19 October 2022. [Google Scholar]
- Osipovich, K.; Vorontsov, A.; Chumaevskii, A.; Moskvichev, E.; Zakharevich, I.; Dobrovolsky, A.; Sudarikov, A.; Zykova, A.; Rubtsov, A.; Kolubaev, E. Features of Microstructure and Texture Formation of Large-Sized Blocks of C11000 Copper Produced by Electron Beam Wire-Feed Additive Technology. Materials 2022, 15, 814. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, S.V.; Gurianov, D.A.; Kalashnikov, K.N.; Chumaevskii, A.V.; Mironov, Y.P.; Kolubaev, E.A. Directional Solidification of a Nickel-Based Superalloy Product Structure Fabricated on Stainless Steel Substrate by Electron Beam Additive Manufacturing. Metall. Mater. Trans. A 2021, 52, 857–870. [Google Scholar] [CrossRef]
- Zykova, A.; Chumaevskii, A.; Panfilov, A.; Vorontsov, A.; Nikolaeva, A.; Osipovich, K.; Gusarova, A.; Chebodaeva, V.; Nikonov, S.; Gurianov, D.; et al. Aluminum Bronze/Udimet 500 Composites Prepared by Electron-Beam Additive Double-Wire-Feed Manufacturing. Materials 2022, 15, 6270. [Google Scholar] [CrossRef] [PubMed]
Property | UTS, MPa | Ductility, % | UTS, MPa | Ductility, % |
---|---|---|---|---|
Direction | Wall Growth Direction | Layer Deposition Direction | ||
CuAl9Mn2 | 468 ± 33 | 50 ± 0.8 | 430 ± 5 | 63 ± 1.2 |
Inconel 625 | 815± 19 | 30± 3.0 | 868± 28 | 21± 4.2 |
5% | 525 ± 13 | 36 ± 1.4 | 519 ± 31 | 35 ± 3.5 |
15% | 560 ± 14 | 22 ± 2.1 | 584 ± 17 | 20 ± 4.1 |
25% | 794 ± 55 | 11 ± 1.8 | 824 ± 88 | 13 ± 1.8 |
50% | 796 ± 55 | 8 ± 1.2 | 530 ± 167 | 6.4 ± 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalashnikov, K.; Kalashnikova, T.; Semenchuk, V.; Knyazhev, E.; Panfilov, A.; Cheremnov, A.; Chumaevskii, A.; Nikonov, S.; Vorontsov, A.; Rubtsov, V.; et al. Development of a Multimaterial Structure Based on CuAl9Mn2 Bronze and Inconel 625 Alloy by Double-Wire-Feed Additive Manufacturing. Metals 2022, 12, 2048. https://doi.org/10.3390/met12122048
Kalashnikov K, Kalashnikova T, Semenchuk V, Knyazhev E, Panfilov A, Cheremnov A, Chumaevskii A, Nikonov S, Vorontsov A, Rubtsov V, et al. Development of a Multimaterial Structure Based on CuAl9Mn2 Bronze and Inconel 625 Alloy by Double-Wire-Feed Additive Manufacturing. Metals. 2022; 12(12):2048. https://doi.org/10.3390/met12122048
Chicago/Turabian StyleKalashnikov, Kirill, Tatiana Kalashnikova, Vyacheslav Semenchuk, Evgeny Knyazhev, Aleksander Panfilov, Andrey Cheremnov, Andrey Chumaevskii, Sergey Nikonov, Andrey Vorontsov, Valery Rubtsov, and et al. 2022. "Development of a Multimaterial Structure Based on CuAl9Mn2 Bronze and Inconel 625 Alloy by Double-Wire-Feed Additive Manufacturing" Metals 12, no. 12: 2048. https://doi.org/10.3390/met12122048
APA StyleKalashnikov, K., Kalashnikova, T., Semenchuk, V., Knyazhev, E., Panfilov, A., Cheremnov, A., Chumaevskii, A., Nikonov, S., Vorontsov, A., Rubtsov, V., & Kolubaev, E. (2022). Development of a Multimaterial Structure Based on CuAl9Mn2 Bronze and Inconel 625 Alloy by Double-Wire-Feed Additive Manufacturing. Metals, 12(12), 2048. https://doi.org/10.3390/met12122048