Study on Corrosion and Wear Behavior Mechanism of Reactor Material in Metastannic Acid Synthesis
Abstract
:1. Introduction
2. Calculations and Experimental Methods
2.1. First-Principles Calculations
2.2. Materials and Methods
3. Results and Discussion
3.1. Computational Analysis
3.1.1. Mechanical Properties Analysis
3.1.2. Oxygen Adsorption Analysis
3.2. Electrochemical Corrosion Analysis
3.3. Micro-Hardness and Friction Wear Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, T.; Zhang, S.; Wang, Z.Y.; Zhang, C.H.; Zhang, D.X.; Wang, N.W.; Wu, C.L. Cavitation erosion/corrosion synergy and wear behaviors of nickel-based alloy coatings on 304 stainless steel prepared by cold metal transfer. Wear 2022, 510–511, 204510. [Google Scholar] [CrossRef]
- Parida, J.; Chandra Mishra, S. Wear and corrosion behaviour study of LM0 alloy. Mater. Today Proc. 2022, 62, 5888–5893. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Li, Q.-A.; Fu, S.-L.; Wang, J.-Z. Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater. Trans. Nonferrous Met. Soc. China 2014, 24, 1022–1031. [Google Scholar] [CrossRef]
- Ozturk, K.; Gecu, R.; Karaaslan, A. Microstructure, wear and corrosion characteristics of multiple-reinforced (SiC–B4C–Al2O3) Al matrix composites produced by liquid metal infiltration. Ceram. Int. 2021, 47, 18274–18285. [Google Scholar] [CrossRef]
- Canakcı, A.; Ozkaya, S.; Erdemir, F.; Karabacak, A.H.; Celebi, M. Effects of Fe–Al intermetallic compounds on the wear and corrosion performances of AA2024/316L SS metal/metal composites. J. Alloys Compd. 2020, 845, 156236. [Google Scholar] [CrossRef]
- Venkatesh, R.; Rao, V.S. Thermal, corrosion and wear analysis of copper based metal matrix composites reinforced with alumina and graphite. Def. Technol. 2018, 14, 346–355. [Google Scholar] [CrossRef]
- Bateni, M.R.; Szpunar, J.A.; Wang, X.; Li, D.Y. Wear and corrosion wear of medium carbon steel and 304 stainless steel. Wear 2006, 260, 116–122. [Google Scholar] [CrossRef]
- Li, Z.; Wu, L.; Ge, R.; Zhang, F.; Shan, Q.; Huang, Y.; Su, R. Erosion corrosion of Ti and Zr in acidic metastannic acid synthesis. Mater. Res. Express 2021, 8, 046528. [Google Scholar] [CrossRef]
- Lee, J.-I.; Park, J.B.; Kim, T.W.; Kong, M.-S.; Ryu, J.H. Selective recovery of Sn from copper alloy dross and its heat-treatment for synthesis of SnO2. Trans. Nonferrous Met. Soc. China 2014, 24, s157–s161. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Auer, J.; Krotscheck, E. A rapidly converging algorithm for solving the Kohn—Sham and related equations in electronic structure theory. Comput. Phys. Commun. 1999, 118, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Tjong, S.C. Transmission electron microscope observations of the dislocation substructures induced by cyclic deformation of the ferritic Fe25Cr(2–4)Al and Fe19Cr4Ni2Al alloys. Mater. Charact. 1991, 26, 109–121. [Google Scholar] [CrossRef]
- LaGrange, T.; Campbell, G.H.; Turchi, P.E.A.; King, W.E. Rapid phase transformation kinetics on a nanoscale: Studies of the α→β transformation in pure, nanocrystalline Ti using the nanosecond dynamic transmission electron microscope. Acta Mater. 2007, 55, 5211–5224. [Google Scholar] [CrossRef]
- Shen, X.; Yu, P.F.; Jing, Q.; Yao, Y.; Gu, L.; Wang, Y.G.; Duan, X.F.; Yu, R.C.; Liu, R.P. Transmission electron microscopy observations of structural modulation in the phase transition from α-Zr to ω-Zr induced by shear strain. Scr. Mater. 2012, 67, 653–656. [Google Scholar] [CrossRef]
- Ranganathan, S.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Jeitschko, W.; Pottgen, R.; Hoffmann, R.D. Structural Chemistry of Hard Materials. In Handbook of Ceramic Hard Materials; Wiley-VCH: Weinheim, Germany, 2000; pp. 2–40. [Google Scholar]
- Gao, F.M.; Gao, L.H. Microscopic models of hardness. J. Superhard Mater. 2010, 32, 148–166. [Google Scholar] [CrossRef] [Green Version]
- Brazhkin, V.; Dubrovinskaia, N.; Nicol, M.; Novikov, N.; Riedel, R.; Solozhenko, V.; Zhao, Y. From our readers: What does ‘harder than diamond’ mean? Nat. Mater. 2004, 3, 576–577. [Google Scholar] [CrossRef]
- Haines, J.; Léger, J.M.; Bocquillon, G. Synthesis and Design of Superhard Materials. Annu. Rev. Mater. Res. 2001, 31, 1–23. [Google Scholar] [CrossRef]
- Watt, J.P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry. J. Appl. Phys. 1980, 51, 1520–1524. [Google Scholar] [CrossRef]
- Yoshino, H.; Mézard, M. Emergence of Rigidity at the Structural Glass Transition: A First-Principles Computation. Phys. Rev. Lett. 2010, 105, 015504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Li, Z.; Wei, H.; Xiang, X.; Zhang, F.; Shan, Q. Interfacial structure of WC-Fe metal-matrix composite (WC/Fe3W3C and Fe/Fe3W3C) stability, electronic and mechanical properties from first-principles calculations. Mater. Today Commun. 2022, 33, 104470. [Google Scholar] [CrossRef]
- Wu, H.; Dong, Y.; Li, X.; Li, Y.; Yan, M. First principle calculations and low cost SLM processing of Ti–TiB composite materials. Mater. Sci. Eng. A 2021, 803, 140711. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, W.; Zhang, W.; Liao, Z.; Xiang, X.; Gou, H.; Li, Z.; Wei, H.; Wu, X.; Shan, Q. Microstructure, mechanical properties and wear resistance of rare earth doped WC/steel matrix composites:Experimental and calculations. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Zhou, R.; Feng, J. First-principles calculations of the mechanical and electronic properties of Fe–W–C ternary compounds. Comput. Mater. Sci. 2014, 82, 26–32. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 2012, 33, 93–106. [Google Scholar] [CrossRef]
- Freeman, A.J.; Fu, C.L.; Wimmer, E. Theory of charge transfer at surfaces and interfaces. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1987, 27, 201–208. [Google Scholar] [CrossRef]
- Duan, Y. Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions. Phys. Rev. B 2008, 77, 045332. [Google Scholar] [CrossRef]
- Liang, W.; Li, X.; Ju, H.; Ren, S. Adsorption and dissociation mechanism of toluene on Pd (111) and PdO (101) surface: First principle calculation. Surf. Sci. 2022, 720, 122051. [Google Scholar] [CrossRef]
- Greiner, M.T.; Chai, L.; Helander, M.G.; Tang, W.M.; Lu, Z.H. Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies. Adv. Funct. Mater. 2012, 22, 4557–4568. [Google Scholar] [CrossRef]
- Bellanger, G.; Rameau, J.J. Corrosion of nickel—Chromium deposit on AISI 316L stainless steel in radioactive water with and without fluoride at pH 4. J. Nucl. Mater. 1995, 226, 104–119. [Google Scholar] [CrossRef]
- Thomas, N.T.; Nobe, K. The Electrochemical Behavior of Titanium: Effect of pH and Chloride Ions. J. Electrochem. Soc. 1969, 116, 1748. [Google Scholar] [CrossRef]
- Sutter, E.M.M.; Goetz-Grandmont, G.J. The behaviour of titanium in nitric-hydrofluoric acid solutions. Corros. Sci. 1990, 30, 461–476. [Google Scholar] [CrossRef]
- Nikitin, S.; Maslennikov, A. Electrochemical properties and dissolution of U-5 wt% Zr Alloy in HNO3 solutions. Radiochemistry 2014, 56, 241–246. [Google Scholar] [CrossRef]
- Geringer, J.; Kim, K.; Pellier, J.; Macdonald, D.D. 3—Fretting corrosion processes and wear mechanisms in medical implants. In Bio-Tribocorrosion in Biomaterials and Medical Implants; Yan, Y., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 45–73. [Google Scholar]
- Atrens, A.; Song, G.L.; Shi, Z.; Soltan, A.; Johnston, S.; Dargusch, M.S. Understanding the Corrosion of Mg and Mg Alloys. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 515–534. [Google Scholar]
- Al-Mamun, N.S.; Haider, W.; Shabib, I. Corrosion resistance of additively manufactured 316L stainless steel in chloride−thiosulfate environment. Electrochim. Acta 2020, 362, 137039. [Google Scholar] [CrossRef]
- Popov, B.N. Chapter 12—Corrosion of Structural Concrete. In Corrosion Engineering; Popov, B.N., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 525–556. [Google Scholar]
- Feng, K.; Shao, T. The evolution mechanism of tribo-oxide layer during high temperature dry sliding wear for nickel-based superalloy. Wear 2021, 476, 203747. [Google Scholar] [CrossRef]
- Saini, N.; Pandey, C.; Thapliyal, S.; Dwivedi, D.K. Mechanical Properties and Wear Behavior of Zn and MoS2 Reinforced Surface Composite Al- Si Alloys Using Friction Stir Processing. Silicon 2018, 10, 1979–1990. [Google Scholar] [CrossRef]
- Deepan, M.; Pandey, C.; Saini, N.; Mahapatra, M.M.; Mulik, R.S. Estimation of strength and wear properties of Mg/SiC nanocomposite fabricated through FSP route. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 4613–4622. [Google Scholar] [CrossRef]
- Zhang, C. 14—Understanding the wear and tribological properties of ceramic matrix composites. In Advances in Ceramic Matrix Composites; Low, I.M., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 312–339. [Google Scholar]
- Sevim, I.; Eryurek, I. Effect of fracture toughness on abrasive wear resistance of steels. Mater. Des. 2006, 27, 911–919. [Google Scholar] [CrossRef]
Bulk | C11 | C12 | C44 | BV | GV | BR | GR | BH | GH |
---|---|---|---|---|---|---|---|---|---|
Fe | 192.52 | 109.37 | 47.37 | 137.18 | 45.12 | 137.17 | 44.95 | 137.17 | 45.03 |
Ti | 181.75 | 71.23 | 42.61 | 110.26 | 50.74 | 110.14 | 49.75 | 110.20 | 50.24 |
Zr | 175.06 | 55.12 | 24.958 | 99.74 | 45.05 | 99.71 | 37.71 | 99.73 | 41.38 |
Bulk | E | σ | HV | AU |
---|---|---|---|---|
Fe | 121.77 | 0.305 | 3.84 | 0.019 |
Ti | 130.85 | 0.302 | 4.03 | 0.10 |
Zr | 109.04 | 0.320 | 4.72 | 0.97 |
Specimen | Icorr (A·cm−2) | Ecorr (V) |
---|---|---|
AISI 316L | 1.9113 × 10−5 | 0.094 |
Ti2 | 1.0928 × 10−5 | 0.266 |
Zr1 | 2.2660 × 10−6 | 0.275 |
Specimen | Rs (Ω·cm2) | Rp (Ω·cm2) | CPE-T (F·cm−2) | CPE-P |
---|---|---|---|---|
316L | 2.023 | 735.71 | 1.2467 × 10−4 | 0.83804 |
Ti2 | 2.110 | 7904.6 | 6.9888 × 10−5 | 0.88789 |
Zr1 | 71.152 | 9451.8 | 1.598 × 10−5 | 0.84711 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wei, H.; Su, R.; Yang, X.; Li, Z.; Shan, Q.; Zhang, F. Study on Corrosion and Wear Behavior Mechanism of Reactor Material in Metastannic Acid Synthesis. Metals 2022, 12, 2045. https://doi.org/10.3390/met12122045
Zhang W, Wei H, Su R, Yang X, Li Z, Shan Q, Zhang F. Study on Corrosion and Wear Behavior Mechanism of Reactor Material in Metastannic Acid Synthesis. Metals. 2022; 12(12):2045. https://doi.org/10.3390/met12122045
Chicago/Turabian StyleZhang, Wengao, He Wei, Ruichun Su, Xiwen Yang, Zulai Li, Quan Shan, and Fei Zhang. 2022. "Study on Corrosion and Wear Behavior Mechanism of Reactor Material in Metastannic Acid Synthesis" Metals 12, no. 12: 2045. https://doi.org/10.3390/met12122045
APA StyleZhang, W., Wei, H., Su, R., Yang, X., Li, Z., Shan, Q., & Zhang, F. (2022). Study on Corrosion and Wear Behavior Mechanism of Reactor Material in Metastannic Acid Synthesis. Metals, 12(12), 2045. https://doi.org/10.3390/met12122045